October  2016, 36(10): 5817-5835. doi: 10.3934/dcds.2016056

On the global well-posedness to the 3-D Navier-Stokes-Maxwell system

1. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106

2. 

Department of Mathematics, Nanjing University, Nanjing 210093

Received  September 2015 Revised  March 2016 Published  July 2016

The present paper is devoted to the well-posedness issue of solutions of a full system of the $3$-$D$ incompressible magnetohydrodynamic(MHD) equations. By means of Littlewood-Paley analysis we prove the global well-posedness of solutions in the Besov spaces $\dot{B}_{2,1}^\frac1{2}\times B_{2,1}^\frac3{2}\times B_{2,1}^\frac3{2}$ provided the norm of initial data is small enough in the sense that \begin{align*} \big(\|u_0^h\|_{\dot{B}_{2,1}^\frac1{2}} +\|E_0\|_{B_{2,1}^\frac{3}{2}}+\|B_0\|_{B_{2,1}^\frac{3}{2}}\big)\exp \Big\{\frac{C_0}{\nu^2}\|u_0^3\|_{\dot{B}_{2,1}^\frac1{2}}^2\Big\}\leq c_0, \end{align*} for some sufficiently small constant $c_0.$
Citation: Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056
References:
[1]

H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer, (2011). doi: 10.1007/978-3-642-16830-7. Google Scholar

[2]

J. Chemin, Localization in Fourier space and Navier-Stokes system Phase space analysis of Partial Differential Equations,, Pubbl. Cert. Ric. Mat. Ennio de Gorg Scuola Norma. Sup. Pisa, (2004), 53. Google Scholar

[3]

J. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes,, J. Differential Equations, 121 (1995), 314. doi: 10.1006/jdeq.1995.1131. Google Scholar

[4]

J. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations,, Commun. Math. Phys., 272 (2007), 529. doi: 10.1007/s00220-007-0236-0. Google Scholar

[5]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conducting gases,, Comm. Partial Differential Equations, 26 (2001), 1183. doi: 10.1081/PDE-100106132. Google Scholar

[6]

P. Davidson, An Introduction to Magnetohydrodynamics,, Cambridge Texts in Applied Mathematics, (2001). doi: 10.1017/CBO9780511626333. Google Scholar

[7]

P. Germain, S. Ibrahim and N. Masmoudi, Well-posedness of the Navier-Stokes-Maxwell equations,, Proceedings of the Royal Society of Edinburgh, 144 (2014), 71. doi: 10.1017/S0308210512001242. Google Scholar

[8]

G. Gui and P. Zhang, Stability to the global large solutions of 3-D Navier-Stokes equations,, Adv. Math., 225 (2010), 1248. doi: 10.1016/j.aim.2010.03.022. Google Scholar

[9]

S. Ibrahim and S. Keraani, Global small solutions for the coupled Navier-Maxwell system,, SIAM J. Math. Anal., 43 (2011), 2275. doi: 10.1137/100819813. Google Scholar

[10]

S. Ibrahim and T. Yoneda, Local solvability and loss of smoothness of the Navier-Stokes- Maxwell equations with large initial data,, J. Math. Analysis Applic., 396 (2012), 555. doi: 10.1016/j.jmaa.2012.06.038. Google Scholar

[11]

N. Masmoudi, Global well posedness for the Maxwell-Navier-Stokes system in 2D,, J. Math. Pures Appl., 93 (2010), 559. doi: 10.1016/j.matpur.2009.08.007. Google Scholar

[12]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Comm. Math. Phys., 307 (2011), 713. doi: 10.1007/s00220-011-1350-6. Google Scholar

[13]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, J. Funct. Anal., 262 (2012), 3556. doi: 10.1016/j.jfa.2012.01.022. Google Scholar

[14]

T. Zhang, Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space,, Commun. Math. Phys., 287 (2009), 211. doi: 10.1007/s00220-008-0631-1. Google Scholar

show all references

References:
[1]

H. Bahouri, J. Chemin and R. Danchin, Fourier Analysis and Nonlinear Partial Differential Equations,, Springer, (2011). doi: 10.1007/978-3-642-16830-7. Google Scholar

[2]

J. Chemin, Localization in Fourier space and Navier-Stokes system Phase space analysis of Partial Differential Equations,, Pubbl. Cert. Ric. Mat. Ennio de Gorg Scuola Norma. Sup. Pisa, (2004), 53. Google Scholar

[3]

J. Chemin and N. Lerner, Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes,, J. Differential Equations, 121 (1995), 314. doi: 10.1006/jdeq.1995.1131. Google Scholar

[4]

J. Chemin and P. Zhang, On the global wellposedness to the 3-D incompressible anisotropic Navier-Stokes equations,, Commun. Math. Phys., 272 (2007), 529. doi: 10.1007/s00220-007-0236-0. Google Scholar

[5]

R. Danchin, Local theory in critical spaces for compressible viscous and heat-conducting gases,, Comm. Partial Differential Equations, 26 (2001), 1183. doi: 10.1081/PDE-100106132. Google Scholar

[6]

P. Davidson, An Introduction to Magnetohydrodynamics,, Cambridge Texts in Applied Mathematics, (2001). doi: 10.1017/CBO9780511626333. Google Scholar

[7]

P. Germain, S. Ibrahim and N. Masmoudi, Well-posedness of the Navier-Stokes-Maxwell equations,, Proceedings of the Royal Society of Edinburgh, 144 (2014), 71. doi: 10.1017/S0308210512001242. Google Scholar

[8]

G. Gui and P. Zhang, Stability to the global large solutions of 3-D Navier-Stokes equations,, Adv. Math., 225 (2010), 1248. doi: 10.1016/j.aim.2010.03.022. Google Scholar

[9]

S. Ibrahim and S. Keraani, Global small solutions for the coupled Navier-Maxwell system,, SIAM J. Math. Anal., 43 (2011), 2275. doi: 10.1137/100819813. Google Scholar

[10]

S. Ibrahim and T. Yoneda, Local solvability and loss of smoothness of the Navier-Stokes- Maxwell equations with large initial data,, J. Math. Analysis Applic., 396 (2012), 555. doi: 10.1016/j.jmaa.2012.06.038. Google Scholar

[11]

N. Masmoudi, Global well posedness for the Maxwell-Navier-Stokes system in 2D,, J. Math. Pures Appl., 93 (2010), 559. doi: 10.1016/j.matpur.2009.08.007. Google Scholar

[12]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible anisotropic Navier-Stokes system in the critical spaces,, Comm. Math. Phys., 307 (2011), 713. doi: 10.1007/s00220-011-1350-6. Google Scholar

[13]

M. Paicu and P. Zhang, Global solutions to the 3-D incompressible inhomogeneous Navier-Stokes system,, J. Funct. Anal., 262 (2012), 3556. doi: 10.1016/j.jfa.2012.01.022. Google Scholar

[14]

T. Zhang, Global wellposed problem for the 3-D incompressible anisotropic Navier-Stokes equations in an anisotropic space,, Commun. Math. Phys., 287 (2009), 211. doi: 10.1007/s00220-008-0631-1. Google Scholar

[1]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[2]

Zhichun Zhai. Well-posedness for two types of generalized Keller-Segel system of chemotaxis in critical Besov spaces. Communications on Pure & Applied Analysis, 2011, 10 (1) : 287-308. doi: 10.3934/cpaa.2011.10.287

[3]

Qunyi Bie, Qiru Wang, Zheng-An Yao. On the well-posedness of the inviscid Boussinesq equations in the Besov-Morrey spaces. Kinetic & Related Models, 2015, 8 (3) : 395-411. doi: 10.3934/krm.2015.8.395

[4]

Radjesvarane Alexandre, Mouhamad Elsafadi. Littlewood-Paley theory and regularity issues in Boltzmann homogeneous equations II. Non cutoff case and non Maxwellian molecules. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 1-11. doi: 10.3934/dcds.2009.24.1

[5]

Zhong Tan, Leilei Tong. Asymptotic behavior of the compressible non-isentropic Navier-Stokes-Maxwell system in $\mathbb{R}^3$. Kinetic & Related Models, 2018, 11 (1) : 191-213. doi: 10.3934/krm.2018010

[6]

Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic & Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002

[7]

Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

[8]

Xiaofeng Hou, Limei Zhu. Serrin-type blowup criterion for full compressible Navier-Stokes-Maxwell system with vacuum. Communications on Pure & Applied Analysis, 2016, 15 (1) : 161-183. doi: 10.3934/cpaa.2016.15.161

[9]

Daoyuan Fang, Ruizhao Zi. On the well-posedness of inhomogeneous hyperdissipative Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3517-3541. doi: 10.3934/dcds.2013.33.3517

[10]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[11]

Matthias Hieber, Sylvie Monniaux. Well-posedness results for the Navier-Stokes equations in the rotational framework. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5143-5151. doi: 10.3934/dcds.2013.33.5143

[12]

Xiaoping Zhai, Yongsheng Li, Wei Yan. Global well-posedness for the 3-D incompressible MHD equations in the critical Besov spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1865-1884. doi: 10.3934/cpaa.2015.14.1865

[13]

Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078

[14]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[15]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[16]

Maxim A. Olshanskii, Leo G. Rebholz, Abner J. Salgado. On well-posedness of a velocity-vorticity formulation of the stationary Navier-Stokes equations with no-slip boundary conditions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (7) : 3459-3477. doi: 10.3934/dcds.2018148

[17]

Bin Han, Changhua Wei. Global well-posedness for inhomogeneous Navier-Stokes equations with logarithmical hyper-dissipation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6921-6941. doi: 10.3934/dcds.2016101

[18]

Daniel Coutand, J. Peirce, Steve Shkoller. Global well-posedness of weak solutions for the Lagrangian averaged Navier-Stokes equations on bounded domains. Communications on Pure & Applied Analysis, 2002, 1 (1) : 35-50. doi: 10.3934/cpaa.2002.1.35

[19]

Weimin Peng, Yi Zhou. Global well-posedness of axisymmetric Navier-Stokes equations with one slow variable. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3845-3856. doi: 10.3934/dcds.2016.36.3845

[20]

Yoshihiro Shibata. Local well-posedness of free surface problems for the Navier-Stokes equations in a general domain. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 315-342. doi: 10.3934/dcdss.2016.9.315

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]