October  2016, 36(10): 5445-5475. doi: 10.3934/dcds.2016040

On one dimensional quantum Zakharov system

1. 

Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan

2. 

Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, SIP. Suzhou, Jiangsu, 215123, China, China

Received  April 2015 Revised  April 2016 Published  July 2016

In this paper, we discuss the properties of one dimensional quantum Zakharov system which describes the nonlinear interaction between the quantum Langmuir and quantum ion-acoustic waves. The system (1a)-(1b) with initial data $(E(0),n(0),\partial_t n(0))\in H^k\bigoplus H^l\bigoplus H^{l-2}$ is local well-posedness in low regularity spaces (see Theorem 1.1 and Figure 1). Especially, the low regularity result for $k$ satisfies $-3/4 < k \leq -1/4$ is obtained by using the key observation that the convoluted phase function is convex and careful bilinear analysis. The result can not be obtained by using only Strichartz inequalities for ``Schrödinger" waves.
Citation: Jin-Cheng Jiang, Chi-Kun Lin, Shuanglin Shao. On one dimensional quantum Zakharov system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5445-5475. doi: 10.3934/dcds.2016040
References:
[1]

H. Added and S. Added, Equations of Langmuir turbulence and nonlinear Schrödinger equations: Smoothness and approximation,, Journal of Functional Analysis, 79 (1988), 183. doi: 10.1016/0022-1236(88)90036-5. Google Scholar

[2]

I. Bejenaru and S. Herr, Convolutions of singular measures and applications to the Zakharov system,, J. Funct. Anal., 261 (2011), 478. doi: 10.1016/j.jfa.2011.03.015. Google Scholar

[3]

I. Bejenaru, S. Herr, J. Holmer and D. Tataru, On the 2D Zakharov system with $L^2$-Schrödinger data,, Nonlinearity, 22 (2009), 1063. doi: 10.1088/0951-7715/22/5/007. Google Scholar

[4]

M. Ben-Artzi, H. Koch and J. C. Saut, Disperion estimates for fourth order Schrödinger equations,, C. R. Acad. Sci. Paris, 330 (2000), 87. doi: 10.1016/S0764-4442(00)00120-8. Google Scholar

[5]

J. Bourgain, Fourier transform restriction phenomena for certain lattic subsets and application to nonlinear evolution equations I,II,, Geom. Funct. Anal., 3 (1993), 107. doi: 10.1007/BF01895688. Google Scholar

[6]

J. Bourgain and J. Colliander, On wellposedness of the Zakharov system,, Internat. Math. Res. Notices, 11 (1996), 515. doi: 10.1155/S1073792896000359. Google Scholar

[7]

J. Colliander, J. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems,, Transactions AMS, 360 (2008), 4619. doi: 10.1090/S0002-9947-08-04295-5. Google Scholar

[8]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system,, J. Funct. Anal., 151 (1997), 384. doi: 10.1006/jfan.1997.3148. Google Scholar

[9]

Y. Guo, J. Zhang and B. Guo, Global well-posedness and the classical limit of the solution for the quantum Zakharov system,, Z. Angew. Math. Phys., 64 (2013), 53. doi: 10.1007/s00033-012-0215-y. Google Scholar

[10]

F. Haas, Quantum Plasma: An Hydrodynamic Approach,, Springer-Verlag, (2011). doi: 10.1007/978-1-4419-8201-8. Google Scholar

[11]

F. Haas and P. K. Shukla, Quantum and classical dynamics of Langmuir wave packets,, Physical Review E., 79 (2009), 066402. doi: 10.1103/PhysRevE.79.066402. Google Scholar

[12]

J.-C. Jiang, Bilinear Strichartz estimates for Schrödinger operators in 2 dimensional compact manifolds and cubic NLS,, Differential and Integral Equations, 24 (2011), 83. Google Scholar

[13]

C. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations,, Indiana Univ. Math. J., 40 (1991), 33. doi: 10.1512/iumj.1991.40.40003. Google Scholar

[14]

C. Kenig, G. Ponce and L. Vega, A bilinear estimate with application to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573. doi: 10.1090/S0894-0347-96-00200-7. Google Scholar

[15]

N. Masmoudi and K. Nakanishi, Energy convergence for singular limits of Zakharov type systems,, Inventiones Mathematicae, 172 (2008), 535. doi: 10.1007/s00222-008-0110-5. Google Scholar

[16]

T. Ozawa and Y. Tsutsumi, Existence and smoothing effect of solutions for the Zakharov equations,, Publ. RIMS, 28 (1992), 329. doi: 10.2977/prims/1195168430. Google Scholar

[17]

T. Ozawa and Y. Tsutsumi, The nonlinear Schrödinger limit and the initial layer of the Zakharov equations,, Differential and Integral Equations, 5 (1992), 721. Google Scholar

[18]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case,, Dynamics of PDE, 4 (2007), 197. doi: 10.4310/DPDE.2007.v4.n3.a1. Google Scholar

[19]

H. Schochet and M. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence,, \emph{Comm. Math. Phys.}, 106 (1986), 569. doi: 10.1007/BF01463396. Google Scholar

[20]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse,, Appl. Math. Sci., 139 (1999). Google Scholar

[21]

V. Zakharov, Collapse of Langmuir waves,, Sov. Phys. JETP, 35 (1972), 908. Google Scholar

show all references

References:
[1]

H. Added and S. Added, Equations of Langmuir turbulence and nonlinear Schrödinger equations: Smoothness and approximation,, Journal of Functional Analysis, 79 (1988), 183. doi: 10.1016/0022-1236(88)90036-5. Google Scholar

[2]

I. Bejenaru and S. Herr, Convolutions of singular measures and applications to the Zakharov system,, J. Funct. Anal., 261 (2011), 478. doi: 10.1016/j.jfa.2011.03.015. Google Scholar

[3]

I. Bejenaru, S. Herr, J. Holmer and D. Tataru, On the 2D Zakharov system with $L^2$-Schrödinger data,, Nonlinearity, 22 (2009), 1063. doi: 10.1088/0951-7715/22/5/007. Google Scholar

[4]

M. Ben-Artzi, H. Koch and J. C. Saut, Disperion estimates for fourth order Schrödinger equations,, C. R. Acad. Sci. Paris, 330 (2000), 87. doi: 10.1016/S0764-4442(00)00120-8. Google Scholar

[5]

J. Bourgain, Fourier transform restriction phenomena for certain lattic subsets and application to nonlinear evolution equations I,II,, Geom. Funct. Anal., 3 (1993), 107. doi: 10.1007/BF01895688. Google Scholar

[6]

J. Bourgain and J. Colliander, On wellposedness of the Zakharov system,, Internat. Math. Res. Notices, 11 (1996), 515. doi: 10.1155/S1073792896000359. Google Scholar

[7]

J. Colliander, J. Holmer and N. Tzirakis, Low regularity global well-posedness for the Zakharov and Klein-Gordon-Schrödinger systems,, Transactions AMS, 360 (2008), 4619. doi: 10.1090/S0002-9947-08-04295-5. Google Scholar

[8]

J. Ginibre, Y. Tsutsumi and G. Velo, On the Cauchy problem for the Zakharov system,, J. Funct. Anal., 151 (1997), 384. doi: 10.1006/jfan.1997.3148. Google Scholar

[9]

Y. Guo, J. Zhang and B. Guo, Global well-posedness and the classical limit of the solution for the quantum Zakharov system,, Z. Angew. Math. Phys., 64 (2013), 53. doi: 10.1007/s00033-012-0215-y. Google Scholar

[10]

F. Haas, Quantum Plasma: An Hydrodynamic Approach,, Springer-Verlag, (2011). doi: 10.1007/978-1-4419-8201-8. Google Scholar

[11]

F. Haas and P. K. Shukla, Quantum and classical dynamics of Langmuir wave packets,, Physical Review E., 79 (2009), 066402. doi: 10.1103/PhysRevE.79.066402. Google Scholar

[12]

J.-C. Jiang, Bilinear Strichartz estimates for Schrödinger operators in 2 dimensional compact manifolds and cubic NLS,, Differential and Integral Equations, 24 (2011), 83. Google Scholar

[13]

C. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations,, Indiana Univ. Math. J., 40 (1991), 33. doi: 10.1512/iumj.1991.40.40003. Google Scholar

[14]

C. Kenig, G. Ponce and L. Vega, A bilinear estimate with application to the KdV equation,, J. Amer. Math. Soc., 9 (1996), 573. doi: 10.1090/S0894-0347-96-00200-7. Google Scholar

[15]

N. Masmoudi and K. Nakanishi, Energy convergence for singular limits of Zakharov type systems,, Inventiones Mathematicae, 172 (2008), 535. doi: 10.1007/s00222-008-0110-5. Google Scholar

[16]

T. Ozawa and Y. Tsutsumi, Existence and smoothing effect of solutions for the Zakharov equations,, Publ. RIMS, 28 (1992), 329. doi: 10.2977/prims/1195168430. Google Scholar

[17]

T. Ozawa and Y. Tsutsumi, The nonlinear Schrödinger limit and the initial layer of the Zakharov equations,, Differential and Integral Equations, 5 (1992), 721. Google Scholar

[18]

B. Pausader, Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case,, Dynamics of PDE, 4 (2007), 197. doi: 10.4310/DPDE.2007.v4.n3.a1. Google Scholar

[19]

H. Schochet and M. Weinstein, The nonlinear Schrödinger limit of the Zakharov equations governing Langmuir turbulence,, \emph{Comm. Math. Phys.}, 106 (1986), 569. doi: 10.1007/BF01463396. Google Scholar

[20]

C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation, Self-Focusing and Wave Collapse,, Appl. Math. Sci., 139 (1999). Google Scholar

[21]

V. Zakharov, Collapse of Langmuir waves,, Sov. Phys. JETP, 35 (1972), 908. Google Scholar

[1]

Shinya Kinoshita. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in 2D. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1479-1504. doi: 10.3934/dcds.2018061

[2]

Isao Kato. Well-posedness for the Cauchy problem of the Klein-Gordon-Zakharov system in four and more spatial dimensions. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2247-2280. doi: 10.3934/cpaa.2016036

[3]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[4]

Vanessa Barros, Felipe Linares. A remark on the well-posedness of a degenerated Zakharov system. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1259-1274. doi: 10.3934/cpaa.2015.14.1259

[5]

Kenji Nakanishi, Hideo Takaoka, Yoshio Tsutsumi. Local well-posedness in low regularity of the MKDV equation with periodic boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1635-1654. doi: 10.3934/dcds.2010.28.1635

[6]

Hiroyuki Hirayama. Well-posedness and scattering for a system of quadratic derivative nonlinear Schrödinger equations with low regularity initial data. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1563-1591. doi: 10.3934/cpaa.2014.13.1563

[7]

Hartmut Pecher. Low regularity well-posedness for the 3D Klein - Gordon - Schrödinger system. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1081-1096. doi: 10.3934/cpaa.2012.11.1081

[8]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[9]

Gustavo Ponce, Jean-Claude Saut. Well-posedness for the Benney-Roskes/Zakharov- Rubenchik system. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 811-825. doi: 10.3934/dcds.2005.13.811

[10]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[11]

Hyungjin Huh, Bora Moon. Low regularity well-posedness for Gross-Neveu equations. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1903-1913. doi: 10.3934/cpaa.2015.14.1903

[12]

E. Compaan, N. Tzirakis. Low-regularity global well-posedness for the Klein-Gordon-Schrödinger system on $ \mathbb{R}^+ $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 3867-3895. doi: 10.3934/dcds.2019156

[13]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[14]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[15]

Francis Ribaud, Stéphane Vento. Local and global well-posedness results for the Benjamin-Ono-Zakharov-Kuznetsov equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 449-483. doi: 10.3934/dcds.2017019

[16]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[17]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[18]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[19]

Wenming Hu, Huicheng Yin. Well-posedness of low regularity solutions to the second order strictly hyperbolic equations with non-Lipschitzian coefficients. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1891-1919. doi: 10.3934/cpaa.2019088

[20]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]