# American Institute of Mathematical Sciences

September  2016, 36(9): 4839-4870. doi: 10.3934/dcds.2016009

## Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate

 1 School of Mathematical Sciences, Huaqiao University, Quanzhou 362021, China, China, China, China

Received  June 2015 Revised  January 2016 Published  May 2016

In this paper, we study the asymptotic behavior of solution to the initial boundary value problem for the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line $\mathbb{R}_{+}:=(0,\infty).$ Our idea mainly comes from [10] which describes the large time behavior of solution for the non-isentropic Navier-Stokes equations in a half line. The electric field brings us some additional troubles compared with Navier-Stokes equations in the absence of the electric field. We obtain the convergence rate of global solution towards corresponding stationary solution. Precisely, if an initial perturbation decays with the algebraic or the exponential rate in space, the solution converges to the corresponding stationary solution as time tends to infinity with the algebraic or the exponential rate in time. The proofs are given by a weighted energy method.
Citation: Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009
##### References:
 [1] J. Carr, Applications of Centre Manifold Theory,, Springer Verlag, (1981). Google Scholar [2] F. Chen, Introduction to Plasma Physics and Controlled Fusion,, Second edition, (1984). Google Scholar [3] D. Donatelli, Local and global existence for the coupled Navier-Stokes-Poisson problem,, Quart. Appl. Math., 61 (2003), 345. Google Scholar [4] R. J. Duan and S. Q. Liu, Stability of rarefaction waves of the Navier-Stokes-Poisson system,, J. Differential Equations, 258 (2015), 2495. doi: 10.1016/j.jde.2014.12.019. Google Scholar [5] R. J. Duan and S. Q. Liu, Stability of the rarefaction wave of the Vlasov-Poisson-Boltzmann system,, SIAM J. Math. Anal., 47 (2015), 3585. doi: 10.1137/140995179. Google Scholar [6] R. J. Duan, S. Q. Liu, H. Y. Yin and C. J. Zhu, Stability of the rarefaction wave for a two-fluid plasma model with diffusion,, Sci. China Math., 59 (2016), 67. doi: 10.1007/s11425-015-5059-4. Google Scholar [7] R. J. Duan and X. F. Yang, Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations,, Comm. Pure Appl. Anal., 12 (2013), 985. doi: 10.3934/cpaa.2013.12.985. Google Scholar [8] F. M. Huang and X. H. Qin, Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation,, J. Differential Equations, 246 (2009), 4077. doi: 10.1016/j.jde.2009.01.017. Google Scholar [9] S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97. doi: 10.1007/BF01212358. Google Scholar [10] S. Kawashima, T. Nakamura, S. Nishibata and P. C. Zhu, Stationary waves to viscous heat-conductive gases in half space: Existence, stability and convergence rate,, Math. Models Methods Appl. Sci., 20 (2010), 2201. doi: 10.1142/S0218202510004908. Google Scholar [11] S. Kawashima, S. Nishibata and P. C. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, Comm. Math. Phys., 240 (2003), 483. doi: 10.1007/s00220-003-0909-2. Google Scholar [12] H. L. Li, A. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^{3}$,, Arch. Ration. Mech. Anal., 196 (2010), 681. doi: 10.1007/s00205-009-0255-4. Google Scholar [13] S. Q. Liu, H. Y. Yin and C. J. Zhu, Stability of contact discontinuity for the Navier-Stokes-Poisson system with free boundary,, preprint, (). Google Scholar [14] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer, (1990). doi: 10.1007/978-3-7091-6961-2. Google Scholar [15] A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary,, Arch. Ration. Mech. Anal., 146 (1999), 1. doi: 10.1007/s002050050134. Google Scholar [16] A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas,, Comm. Math. Phys., 222 (2001), 449. doi: 10.1007/s002200100517. Google Scholar [17] T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differential Equations, 241 (2007), 94. doi: 10.1016/j.jde.2007.06.016. Google Scholar [18] T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas,, Journal of Hyperbolic Differential Equations, 8 (2011), 651. doi: 10.1142/S0219891611002524. Google Scholar [19] M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcial. Ekvac., 41 (1998), 107. Google Scholar [20] L. Z. Ruan, H. Y. Yin and C. J. Zhu, The stability of the superposition of rarefaction wave and contact discontinuity for the Navier-Stokes-Poisson system with free boundary,, preprint., (). Google Scholar [21] Z. Tan, T. Yang, H. J. Zhao and Q. Y. Zou, Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data,, SIAM J. Math. Anal., 45 (2013), 547. doi: 10.1137/120876174. Google Scholar [22] H. Y. Yin, J. S. Zhang and C. J. Zhu, Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier-Stokes-Poisson system,, Nonlinear Analysis: Real World Applications, 31 (2016), 492. doi: 10.1016/j.nonrwa.2016.01.020. Google Scholar [23] G. J. Zhang, H. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbbR^{3}$,, J.Differential Equations, 250 (2011), 866. doi: 10.1016/j.jde.2010.07.035. Google Scholar [24] F. Zhou and Y. P. Li, Convergence rate of solutions toward stationary solutions to the bipolar Navier-Stokes-Poisson equations in a half line,, Bound. Value Probl., 2013 (2013), 1. doi: 10.1186/1687-2770-2013-124. Google Scholar

show all references

##### References:
 [1] J. Carr, Applications of Centre Manifold Theory,, Springer Verlag, (1981). Google Scholar [2] F. Chen, Introduction to Plasma Physics and Controlled Fusion,, Second edition, (1984). Google Scholar [3] D. Donatelli, Local and global existence for the coupled Navier-Stokes-Poisson problem,, Quart. Appl. Math., 61 (2003), 345. Google Scholar [4] R. J. Duan and S. Q. Liu, Stability of rarefaction waves of the Navier-Stokes-Poisson system,, J. Differential Equations, 258 (2015), 2495. doi: 10.1016/j.jde.2014.12.019. Google Scholar [5] R. J. Duan and S. Q. Liu, Stability of the rarefaction wave of the Vlasov-Poisson-Boltzmann system,, SIAM J. Math. Anal., 47 (2015), 3585. doi: 10.1137/140995179. Google Scholar [6] R. J. Duan, S. Q. Liu, H. Y. Yin and C. J. Zhu, Stability of the rarefaction wave for a two-fluid plasma model with diffusion,, Sci. China Math., 59 (2016), 67. doi: 10.1007/s11425-015-5059-4. Google Scholar [7] R. J. Duan and X. F. Yang, Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations,, Comm. Pure Appl. Anal., 12 (2013), 985. doi: 10.3934/cpaa.2013.12.985. Google Scholar [8] F. M. Huang and X. H. Qin, Stability of boundary layer and rarefaction wave to an outflow problem for compressible Navier-Stokes equations under large perturbation,, J. Differential Equations, 246 (2009), 4077. doi: 10.1016/j.jde.2009.01.017. Google Scholar [9] S. Kawashima and A. Matsumura, Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion,, Comm. Math. Phys., 101 (1985), 97. doi: 10.1007/BF01212358. Google Scholar [10] S. Kawashima, T. Nakamura, S. Nishibata and P. C. Zhu, Stationary waves to viscous heat-conductive gases in half space: Existence, stability and convergence rate,, Math. Models Methods Appl. Sci., 20 (2010), 2201. doi: 10.1142/S0218202510004908. Google Scholar [11] S. Kawashima, S. Nishibata and P. C. Zhu, Asymptotic stability of the stationary solution to the compressible Navier-Stokes equations in the half space,, Comm. Math. Phys., 240 (2003), 483. doi: 10.1007/s00220-003-0909-2. Google Scholar [12] H. L. Li, A. Matsumura and G. J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^{3}$,, Arch. Ration. Mech. Anal., 196 (2010), 681. doi: 10.1007/s00205-009-0255-4. Google Scholar [13] S. Q. Liu, H. Y. Yin and C. J. Zhu, Stability of contact discontinuity for the Navier-Stokes-Poisson system with free boundary,, preprint, (). Google Scholar [14] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations,, Springer, (1990). doi: 10.1007/978-3-7091-6961-2. Google Scholar [15] A. Matsumura and M. Mei, Convergence to travelling fronts of solutions of the p-system with viscosity in the presence of a boundary,, Arch. Ration. Mech. Anal., 146 (1999), 1. doi: 10.1007/s002050050134. Google Scholar [16] A. Matsumura and K. Nishihara, Large-time behaviors of solutions to an inflow problem in the half space for a one-dimensional system of compressible viscous gas,, Comm. Math. Phys., 222 (2001), 449. doi: 10.1007/s002200100517. Google Scholar [17] T. Nakamura, S. Nishibata and T. Yuge, Convergence rate of solutions toward stationary solutions to the compressible Navier-Stokes equation in a half line,, J. Differential Equations, 241 (2007), 94. doi: 10.1016/j.jde.2007.06.016. Google Scholar [18] T. Nakamura and S. Nishibata, Stationary wave associated with an inflow problem in the half line for viscous heat-conductive gas,, Journal of Hyperbolic Differential Equations, 8 (2011), 651. doi: 10.1142/S0219891611002524. Google Scholar [19] M. Nishikawa, Convergence rate to the traveling wave for viscous conservation laws,, Funkcial. Ekvac., 41 (1998), 107. Google Scholar [20] L. Z. Ruan, H. Y. Yin and C. J. Zhu, The stability of the superposition of rarefaction wave and contact discontinuity for the Navier-Stokes-Poisson system with free boundary,, preprint., (). Google Scholar [21] Z. Tan, T. Yang, H. J. Zhao and Q. Y. Zou, Global solutions to the one-dimensional compressible Navier-Stokes-Poisson equations with large data,, SIAM J. Math. Anal., 45 (2013), 547. doi: 10.1137/120876174. Google Scholar [22] H. Y. Yin, J. S. Zhang and C. J. Zhu, Stability of the superposition of boundary layer and rarefaction wave for outflow problem on the two-fluid Navier-Stokes-Poisson system,, Nonlinear Analysis: Real World Applications, 31 (2016), 492. doi: 10.1016/j.nonrwa.2016.01.020. Google Scholar [23] G. J. Zhang, H. L. Li and C. J. Zhu, Optimal decay rate of the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbbR^{3}$,, J.Differential Equations, 250 (2011), 866. doi: 10.1016/j.jde.2010.07.035. Google Scholar [24] F. Zhou and Y. P. Li, Convergence rate of solutions toward stationary solutions to the bipolar Navier-Stokes-Poisson equations in a half line,, Bound. Value Probl., 2013 (2013), 1. doi: 10.1186/1687-2770-2013-124. Google Scholar
 [1] Renjun Duan, Xiongfeng Yang. Stability of rarefaction wave and boundary layer for outflow problem on the two-fluid Navier-Stokes-Poisson equations. Communications on Pure & Applied Analysis, 2013, 12 (2) : 985-1014. doi: 10.3934/cpaa.2013.12.985 [2] Zhong Tan, Yong Wang, Xu Zhang. Large time behavior of solutions to the non-isentropic compressible Navier-Stokes-Poisson system in $\mathbb{R}^{3}$. Kinetic & Related Models, 2012, 5 (3) : 615-638. doi: 10.3934/krm.2012.5.615 [3] Min Li, Xueke Pu, Shu Wang. Quasineutral limit for the quantum Navier-Stokes-Poisson equations. Communications on Pure & Applied Analysis, 2017, 16 (1) : 273-294. doi: 10.3934/cpaa.2017013 [4] Sun-Ho Choi. Weighted energy method and long wave short wave decomposition on the linearized compressible Navier-Stokes equation. Networks & Heterogeneous Media, 2013, 8 (2) : 465-479. doi: 10.3934/nhm.2013.8.465 [5] Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41 [6] Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 [7] Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495 [8] Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17 [9] Atanas Stefanov. On the Lipschitzness of the solution map for the 2 D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2010, 26 (4) : 1471-1490. doi: 10.3934/dcds.2010.26.1471 [10] Boris Haspot, Ewelina Zatorska. From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3107-3123. doi: 10.3934/dcds.2016.36.3107 [11] Zhengping Wang, Huan-Song Zhou. Positive solution for a nonlinear stationary Schrödinger-Poisson system in $R^3$. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 809-816. doi: 10.3934/dcds.2007.18.809 [12] Haifeng Hu, Kaijun Zhang. Stability of the stationary solution of the cauchy problem to a semiconductor full hydrodynamic model with recombination-generation rate. Kinetic & Related Models, 2015, 8 (1) : 117-151. doi: 10.3934/krm.2015.8.117 [13] Laiqing Meng, Jia Yuan, Xiaoxin Zheng. Global existence of almost energy solution to the two-dimensional chemotaxis-Navier-Stokes equations with partial diffusion. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3413-3441. doi: 10.3934/dcds.2019141 [14] Franck Boyer, Pierre Fabrie. Outflow boundary conditions for the incompressible non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2007, 7 (2) : 219-250. doi: 10.3934/dcdsb.2007.7.219 [15] Minghua Yang, Jinyi Sun. Gevrey regularity and existence of Navier-Stokes-Nernst-Planck-Poisson system in critical Besov spaces. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1617-1639. doi: 10.3934/cpaa.2017078 [16] Qingshan Zhang, Yuxiang Li. Convergence rates of solutions for a two-dimensional chemotaxis-Navier-Stokes system. Discrete & Continuous Dynamical Systems - B, 2015, 20 (8) : 2751-2759. doi: 10.3934/dcdsb.2015.20.2751 [17] Jishan Fan, Fucai Li, Gen Nakamura. Convergence of the full compressible Navier-Stokes-Maxwell system to the incompressible magnetohydrodynamic equations in a bounded domain. Kinetic & Related Models, 2016, 9 (3) : 443-453. doi: 10.3934/krm.2016002 [18] Vladimir V. Chepyzhov, E. S. Titi, Mark I. Vishik. On the convergence of solutions of the Leray-$\alpha$ model to the trajectory attractor of the 3D Navier-Stokes system. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 481-500. doi: 10.3934/dcds.2007.17.481 [19] Zhendong Luo. A reduced-order SMFVE extrapolation algorithm based on POD technique and CN method for the non-stationary Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2015, 20 (4) : 1189-1212. doi: 10.3934/dcdsb.2015.20.1189 [20] Weike Wang, Xin Xu. Large time behavior of solution for the full compressible navier-stokes-maxwell system. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2283-2313. doi: 10.3934/cpaa.2015.14.2283

2018 Impact Factor: 1.143

## Metrics

• HTML views (0)
• Cited by (2)

• on AIMS