February  2016, 36(2): 877-893. doi: 10.3934/dcds.2016.36.877

Stable P-symmetric closed characteristics on partially symmetric compact convex hypersurfaces

1. 

Key Laboratory of Wu Wen-Tsun Mathematics, Chinese Academy of Sciences, School of Mathematical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

2. 

School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071

Received  February 2014 Published  August 2015

In this paper, let $n\geq2$ be an integer, $P=diag(-I_{n-\kappa},I_\kappa,-I_{n-\kappa}, I_\kappa)$ for some integer $\kappa\in[0, n-1)$, and $\Sigma \subset {\bf R}^{2n}$ be a partially symmetric compact convex hypersurface, i.e., $x\in \Sigma$ implies $Px\in\Sigma$. We prove that if $\Sigma$ is $(r,R)$-pinched with $\frac{R}{r}<\sqrt{\frac{5}{3}}$, then $\Sigma$ carries at least two geometrically distinct P-symmetric closed characteristics which possess at least $2n-4\kappa$ Floquet multipliers on the unit circle of the complex plane.
Citation: Hui Liu, Duanzhi Zhang. Stable P-symmetric closed characteristics on partially symmetric compact convex hypersurfaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 877-893. doi: 10.3934/dcds.2016.36.877
References:
[1]

Y. Dong and Y. Long, Closed characteristics on partially symmetric compact convex hypersurfaces in $R^{2n}$,, J. Differential Equations, 196 (2004), 226. doi: 10.1016/S0022-0396(03)00168-2. Google Scholar

[2]

Y. Dong and Y. Long, Stable closed characteristics on partially symmetric compact convex hypersurfaces,, J. Differential Equations, 206 (2004), 265. doi: 10.1016/j.jde.2004.03.004. Google Scholar

[3]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics,, Springer-Verlag. Berlin. 1990., (1990). doi: 10.1007/978-3-642-74331-3. Google Scholar

[4]

I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and their closed trajectories,, Comm. Math. Phys., 113 (1987), 419. doi: 10.1007/BF01221255. Google Scholar

[5]

I. Ekeland and J. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface,, Ann. of Math., 112 (1980), 283. doi: 10.2307/1971148. Google Scholar

[6]

I. Ekeland and L. Lassoued, Multiplicité des trajectoires fermées d'un systéme hamiltonien sur une hypersurface d'energie convexe,, Ann. IHP. Anal. non Linéaire., 4 (1987), 307. Google Scholar

[7]

E. Fadell and P. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation equations for Hamiltonian systems,, Invent. Math., 45 (1978), 139. doi: 10.1007/BF01390270. Google Scholar

[8]

M. Girardi, Multiple orbits for Hamiltonian systems on starshaped ernergy surfaces with symmetry,, Ann. IHP. Analyse non linéaire., 1 (1984), 285. Google Scholar

[9]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltoinan systems with application to figure-eight orbits,, Commun. Math. Phys., 290 (2009), 737. doi: 10.1007/s00220-009-0860-y. Google Scholar

[10]

H. Liu, Stability of symmetric closed characteristics on symmetric compact convex hypersurfaces in $R^{2n}$ under a pinching condition,, Acta Mathematica Sinica, 28 (2012), 885. doi: 10.1007/s10114-011-0494-9. Google Scholar

[11]

H. Liu, Multiple P-invariant closed characteristics on partially symmetric compact convex hypersurfaces in $R^{2n}$,, Cal. Variations and PDEs, 49 (2014), 1121. doi: 10.1007/s00526-013-0614-8. Google Scholar

[12]

H. Liu and D. Zhang, On the number of P-invariant closed characteristics on partially symmetric compact convex hypersurfaces in $R^{2n}$,, Science China Mathematics, 58 (2015), 1771. Google Scholar

[13]

C. Liu, Y. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in $R^{2n}$,, Math. Ann., 323 (2002), 201. doi: 10.1007/s002089100257. Google Scholar

[14]

Y. Long, Index Theory for Symplectic Paths with Applications,, Progress in Math. 207, 207 (2002). doi: 10.1007/978-3-0348-8175-3. Google Scholar

[15]

Y. Long and C. Zhu, Closed characteristics on compact convex hypersurfaces in $R^{2n}$,, Ann. of Math., 155 (2002), 317. doi: 10.2307/3062120. Google Scholar

[16]

P. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure. Appl. Math., 31 (1978), 157. doi: 10.1002/cpa.3160310203. Google Scholar

[17]

A. Szulkin, Morse theory and existence of periodic solutions of convex Hamiltonian systems,, Bull. Soc. Math. France., 116 (1988), 171. Google Scholar

[18]

W. Wang, Closed trajectories on symmetric convex Hamiltonian energy surfaces., Discrete Contin. Dyn. Syst., 32 (2012), 679. doi: 10.3934/dcds.2012.32.679. Google Scholar

[19]

A. Weinstein, Periodic orbits for convex Hamiltonian systems,, Ann. of Math., 108 (1978), 507. doi: 10.2307/1971185. Google Scholar

[20]

W. Wang, X. Hu and Y. Long, Resonance identity, stability and multiplicity of closed characteristics on compact convex hypersurfaces,, Duke Math. J., 139 (2007), 411. doi: 10.1215/S0012-7094-07-13931-0. Google Scholar

[21]

D. Zhang, P-cyclic symmetric closed characteristics on compact convex P-cyclic symmetric hypersurface in $R^{2n}$,, Discrete Contin. Dyn. Syst., 33 (2013), 947. doi: 10.3934/dcds.2013.33.947. Google Scholar

show all references

References:
[1]

Y. Dong and Y. Long, Closed characteristics on partially symmetric compact convex hypersurfaces in $R^{2n}$,, J. Differential Equations, 196 (2004), 226. doi: 10.1016/S0022-0396(03)00168-2. Google Scholar

[2]

Y. Dong and Y. Long, Stable closed characteristics on partially symmetric compact convex hypersurfaces,, J. Differential Equations, 206 (2004), 265. doi: 10.1016/j.jde.2004.03.004. Google Scholar

[3]

I. Ekeland, Convexity Methods in Hamiltonian Mechanics,, Springer-Verlag. Berlin. 1990., (1990). doi: 10.1007/978-3-642-74331-3. Google Scholar

[4]

I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and their closed trajectories,, Comm. Math. Phys., 113 (1987), 419. doi: 10.1007/BF01221255. Google Scholar

[5]

I. Ekeland and J. Lasry, On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface,, Ann. of Math., 112 (1980), 283. doi: 10.2307/1971148. Google Scholar

[6]

I. Ekeland and L. Lassoued, Multiplicité des trajectoires fermées d'un systéme hamiltonien sur une hypersurface d'energie convexe,, Ann. IHP. Anal. non Linéaire., 4 (1987), 307. Google Scholar

[7]

E. Fadell and P. Rabinowitz, Generalized cohomological index theories for Lie group actions with an application to bifurcation equations for Hamiltonian systems,, Invent. Math., 45 (1978), 139. doi: 10.1007/BF01390270. Google Scholar

[8]

M. Girardi, Multiple orbits for Hamiltonian systems on starshaped ernergy surfaces with symmetry,, Ann. IHP. Analyse non linéaire., 1 (1984), 285. Google Scholar

[9]

X. Hu and S. Sun, Index and stability of symmetric periodic orbits in Hamiltoinan systems with application to figure-eight orbits,, Commun. Math. Phys., 290 (2009), 737. doi: 10.1007/s00220-009-0860-y. Google Scholar

[10]

H. Liu, Stability of symmetric closed characteristics on symmetric compact convex hypersurfaces in $R^{2n}$ under a pinching condition,, Acta Mathematica Sinica, 28 (2012), 885. doi: 10.1007/s10114-011-0494-9. Google Scholar

[11]

H. Liu, Multiple P-invariant closed characteristics on partially symmetric compact convex hypersurfaces in $R^{2n}$,, Cal. Variations and PDEs, 49 (2014), 1121. doi: 10.1007/s00526-013-0614-8. Google Scholar

[12]

H. Liu and D. Zhang, On the number of P-invariant closed characteristics on partially symmetric compact convex hypersurfaces in $R^{2n}$,, Science China Mathematics, 58 (2015), 1771. Google Scholar

[13]

C. Liu, Y. Long and C. Zhu, Multiplicity of closed characteristics on symmetric convex hypersurfaces in $R^{2n}$,, Math. Ann., 323 (2002), 201. doi: 10.1007/s002089100257. Google Scholar

[14]

Y. Long, Index Theory for Symplectic Paths with Applications,, Progress in Math. 207, 207 (2002). doi: 10.1007/978-3-0348-8175-3. Google Scholar

[15]

Y. Long and C. Zhu, Closed characteristics on compact convex hypersurfaces in $R^{2n}$,, Ann. of Math., 155 (2002), 317. doi: 10.2307/3062120. Google Scholar

[16]

P. Rabinowitz, Periodic solutions of Hamiltonian systems,, Comm. Pure. Appl. Math., 31 (1978), 157. doi: 10.1002/cpa.3160310203. Google Scholar

[17]

A. Szulkin, Morse theory and existence of periodic solutions of convex Hamiltonian systems,, Bull. Soc. Math. France., 116 (1988), 171. Google Scholar

[18]

W. Wang, Closed trajectories on symmetric convex Hamiltonian energy surfaces., Discrete Contin. Dyn. Syst., 32 (2012), 679. doi: 10.3934/dcds.2012.32.679. Google Scholar

[19]

A. Weinstein, Periodic orbits for convex Hamiltonian systems,, Ann. of Math., 108 (1978), 507. doi: 10.2307/1971185. Google Scholar

[20]

W. Wang, X. Hu and Y. Long, Resonance identity, stability and multiplicity of closed characteristics on compact convex hypersurfaces,, Duke Math. J., 139 (2007), 411. doi: 10.1215/S0012-7094-07-13931-0. Google Scholar

[21]

D. Zhang, P-cyclic symmetric closed characteristics on compact convex P-cyclic symmetric hypersurface in $R^{2n}$,, Discrete Contin. Dyn. Syst., 33 (2013), 947. doi: 10.3934/dcds.2013.33.947. Google Scholar

[1]

Duanzhi Zhang. $P$-cyclic symmetric closed characteristics on compact convex $P$-cyclic symmetric hypersurface in R2n. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 947-964. doi: 10.3934/dcds.2013.33.947

[2]

Wei Wang. Closed trajectories on symmetric convex Hamiltonian energy surfaces. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 679-701. doi: 10.3934/dcds.2012.32.679

[3]

Zhongjie Liu, Duanzhi Zhang. Brake orbits on compact symmetric dynamically convex reversible hypersurfaces on $ \mathbb{R}^\text{2n} $. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4187-4206. doi: 10.3934/dcds.2019169

[4]

Morched Boughariou. Closed orbits of Hamiltonian systems on non-compact prescribed energy surfaces. Discrete & Continuous Dynamical Systems - A, 2003, 9 (3) : 603-616. doi: 10.3934/dcds.2003.9.603

[5]

Tahereh Salimi Siahkolaei, Davod Khojasteh Salkuyeh. A preconditioned SSOR iteration method for solving complex symmetric system of linear equations. Numerical Algebra, Control & Optimization, 2019, 0 (0) : 0-0. doi: 10.3934/naco.2019033

[6]

L. F. Cheung, C. K. Law, M. C. Leung. On a class of rotationally symmetric $p$-harmonic maps. Communications on Pure & Applied Analysis, 2017, 16 (6) : 1941-1955. doi: 10.3934/cpaa.2017095

[7]

Jan Prüss, Gieri Simonett. On the manifold of closed hypersurfaces in $\mathbb{R}^n$. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 5407-5428. doi: 10.3934/dcds.2013.33.5407

[8]

Xavier Cabré, Manel Sanchón. Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian. Communications on Pure & Applied Analysis, 2007, 6 (1) : 43-67. doi: 10.3934/cpaa.2007.6.43

[9]

Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial & Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53

[10]

Jian Lu, Huaiyu Jian. Topological degree method for the rotationally symmetric $L_p$-Minkowski problem. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 971-980. doi: 10.3934/dcds.2016.36.971

[11]

Rinaldo M. Colombo, Mauro Garavello. A Well Posed Riemann Problem for the $p$--System at a Junction. Networks & Heterogeneous Media, 2006, 1 (3) : 495-511. doi: 10.3934/nhm.2006.1.495

[12]

Fernando Miranda, José-Francisco Rodrigues, Lisa Santos. On a p-curl system arising in electromagnetism. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 605-629. doi: 10.3934/dcdss.2012.5.605

[13]

Sergiu Aizicovici, Nikolaos S. Papageorgiou, V. Staicu. The spectrum and an index formula for the Neumann $p-$Laplacian and multiple solutions for problems with a crossing nonlinearity. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 431-456. doi: 10.3934/dcds.2009.25.431

[14]

Antonio Cafure, Guillermo Matera, Melina Privitelli. Singularities of symmetric hypersurfaces and Reed-Solomon codes. Advances in Mathematics of Communications, 2012, 6 (1) : 69-94. doi: 10.3934/amc.2012.6.69

[15]

Shunfu Jin, Yuan Zhao, Wuyi Yue, Lingling Chen. Performance analysis of a P2P storage system with a lazy replica repair policy. Journal of Industrial & Management Optimization, 2014, 10 (1) : 151-166. doi: 10.3934/jimo.2014.10.151

[16]

Qinian Jin, YanYan Li. Starshaped compact hypersurfaces with prescribed $k$-th mean curvature in hyperbolic space. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 367-377. doi: 10.3934/dcds.2006.15.367

[17]

Kenneth R. Meyer, Jesús F. Palacián, Patricia Yanguas. Normally stable hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1201-1214. doi: 10.3934/dcds.2013.33.1201

[18]

Salvatore A. Marano, Nikolaos S. Papageorgiou. Positive solutions to a Dirichlet problem with $p$-Laplacian and concave-convex nonlinearity depending on a parameter. Communications on Pure & Applied Analysis, 2013, 12 (2) : 815-829. doi: 10.3934/cpaa.2013.12.815

[19]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[20]

Jan Burczak, P. Kaplický. Evolutionary, symmetric $p$-Laplacian. Interior regularity of time derivatives and its consequences. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2401-2445. doi: 10.3934/cpaa.2016042

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]