• Previous Article
    Existence of solutions for a class of p-Laplacian type equation with critical growth and potential vanishing at infinity
  • DCDS Home
  • This Issue
  • Next Article
    Smooth local solutions to Weingarten equations and $\sigma_k$-equations
February  2016, 36(2): 661-682. doi: 10.3934/dcds.2016.36.661

Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials

1. 

School of Mathematics and Statistics, Wuhan University, Computational Science Hubei Key Laboratory, Wuhan University, Wuhan, 430072, China

Received  June 2014 Revised  January 2015 Published  August 2015

This article studies the initial boundary value problem for a class of semilinear edge-degenerate parabolic equations with singular potential term. By introducing a family of potential wells, we derive a threshold of the existence of global solutions with exponential decay, and the blow-up in finite time in both cases with low initial energy and critical initial energy.
Citation: Hua Chen, Nian Liu. Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 661-682. doi: 10.3934/dcds.2016.36.661
References:
[1]

M. Alimohammady and M. K. Kalleji, Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration,, J. Funct. Anal., 265 (2013), 2331. doi: 10.1016/j.jfa.2013.07.013. Google Scholar

[2]

H. Chen and G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration,, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329. doi: 10.1007/s11868-012-0046-9. Google Scholar

[3]

H. Chen, X. Liu and Y. Wei, Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents,, Ann. Global Anal. Geom., 39 (2011), 27. doi: 10.1007/s10455-010-9226-0. Google Scholar

[4]

H. Chen, X. Liu and Y. Wei, Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with concial singularities,, Calc. Var. Partial Differential Equations, 43 (2012), 463. doi: 10.1007/s00526-011-0418-7. Google Scholar

[5]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents,, J. Differential Equations, 252 (2012), 4200. doi: 10.1016/j.jde.2011.12.009. Google Scholar

[6]

H. Chen, X. Liu and Y. Wei, Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term,, J. Differential Equations, 252 (2012), 4289. doi: 10.1016/j.jde.2012.01.011. Google Scholar

[7]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semi-linear corner degenerate elliptic equations,, Journal of Functional Analysis, 266 (2014), 3815. doi: 10.1016/j.jfa.2013.12.012. Google Scholar

[8]

H. Chen, Y. Wei and B. Zhou, Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds,, Math. Nachr., 285 (2012), 1370. Google Scholar

[9]

Ju. V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Appliciations,, Oper. Theory Adv. Appl., 93 (1997). doi: 10.1007/978-3-0348-8900-1. Google Scholar

[10]

S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential,, Comm. Partial Differential Equations, 33 (2008), 1996. doi: 10.1080/03605300802402633. Google Scholar

[11]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials,, J. Funct. Anal., 250 (2007), 265. doi: 10.1016/j.jfa.2006.10.019. Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization,, The Multiplier Method, (1994). Google Scholar

[13]

Y. Liu and J. Zhao, On potential wells and applications to semiliear hyperbolic and parabolic equations,, Nonliear Anal., 64 (2006), 2665. doi: 10.1016/j.na.2005.09.011. Google Scholar

[14]

R. Mazzeo, Elliptic theory of differential edge operators, I,, Comm. Partial Differential Equations, 16 (1991), 1615. doi: 10.1080/03605309108820815. Google Scholar

[15]

L. E. Payne, G. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems,, Nonlinear Anal. TMA, 69 (2008), 3495. doi: 10.1016/j.na.2007.09.035. Google Scholar

[16]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions,, J. Math. Anal. Appl., 328 (2007), 1196. doi: 10.1016/j.jmaa.2006.06.015. Google Scholar

[17]

M. Reed and B. Simon, Methods of Modern Mathematical Physics,, Academic Press, (1980). Google Scholar

[18]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations,, Arch. Ration. Mech. Anal., 30 (1968), 148. Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces,, Integral Equations Operator Theory, 41 (2001), 93. doi: 10.1007/BF01202533. Google Scholar

[20]

B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators,, J. Wiley, (1998). Google Scholar

[21]

J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurements,, Princeton Univ. Press, (1983). doi: 10.1515/9781400854554. Google Scholar

show all references

References:
[1]

M. Alimohammady and M. K. Kalleji, Existence result for a class of semilinear totally characteristic hypoelliptic equations with conical degeneration,, J. Funct. Anal., 265 (2013), 2331. doi: 10.1016/j.jfa.2013.07.013. Google Scholar

[2]

H. Chen and G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration,, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329. doi: 10.1007/s11868-012-0046-9. Google Scholar

[3]

H. Chen, X. Liu and Y. Wei, Existence theorem for a class of semilinear totally characteristic elliptic equations with critical cone Sobolev exponents,, Ann. Global Anal. Geom., 39 (2011), 27. doi: 10.1007/s10455-010-9226-0. Google Scholar

[4]

H. Chen, X. Liu and Y. Wei, Cone Sobolev inequality and Dirichlet problem for nonlinear elliptic equations on manifold with concial singularities,, Calc. Var. Partial Differential Equations, 43 (2012), 463. doi: 10.1007/s00526-011-0418-7. Google Scholar

[5]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semilinear totally characteristic elliptic equations with subcritical or critical cone Sobolev exponents,, J. Differential Equations, 252 (2012), 4200. doi: 10.1016/j.jde.2011.12.009. Google Scholar

[6]

H. Chen, X. Liu and Y. Wei, Dirichlet problem for semilinear edge-degenerate elliptic equations with singular potential term,, J. Differential Equations, 252 (2012), 4289. doi: 10.1016/j.jde.2012.01.011. Google Scholar

[7]

H. Chen, X. Liu and Y. Wei, Multiple solutions for semi-linear corner degenerate elliptic equations,, Journal of Functional Analysis, 266 (2014), 3815. doi: 10.1016/j.jfa.2013.12.012. Google Scholar

[8]

H. Chen, Y. Wei and B. Zhou, Existence of solutions for degenerate elliptic equations with singular potential on conical singular manifolds,, Math. Nachr., 285 (2012), 1370. Google Scholar

[9]

Ju. V. Egorov and B.-W. Schulze, Pseudo-Differential Operators, Singularities, Appliciations,, Oper. Theory Adv. Appl., 93 (1997). doi: 10.1007/978-3-0348-8900-1. Google Scholar

[10]

S. Ervedoza, Control and stabilization properties for a singular heat equation with an inverse-square potential,, Comm. Partial Differential Equations, 33 (2008), 1996. doi: 10.1080/03605300802402633. Google Scholar

[11]

V. Felli, E. M. Marchini and S. Terracini, On Schrödinger operators with multipolar inverse-square potentials,, J. Funct. Anal., 250 (2007), 265. doi: 10.1016/j.jfa.2006.10.019. Google Scholar

[12]

V. Komornik, Exact Controllability and Stabilization,, The Multiplier Method, (1994). Google Scholar

[13]

Y. Liu and J. Zhao, On potential wells and applications to semiliear hyperbolic and parabolic equations,, Nonliear Anal., 64 (2006), 2665. doi: 10.1016/j.na.2005.09.011. Google Scholar

[14]

R. Mazzeo, Elliptic theory of differential edge operators, I,, Comm. Partial Differential Equations, 16 (1991), 1615. doi: 10.1080/03605309108820815. Google Scholar

[15]

L. E. Payne, G. A. Philippin and P. W. Schaefer, Blow-up phenomena for some nonlinear parabolic problems,, Nonlinear Anal. TMA, 69 (2008), 3495. doi: 10.1016/j.na.2007.09.035. Google Scholar

[16]

L. E. Payne and P. W. Schaefer, Lower bounds for blow-up time in parabolic problems under Dirichlet conditions,, J. Math. Anal. Appl., 328 (2007), 1196. doi: 10.1016/j.jmaa.2006.06.015. Google Scholar

[17]

M. Reed and B. Simon, Methods of Modern Mathematical Physics,, Academic Press, (1980). Google Scholar

[18]

D. H. Sattinger, On global solution of nonlinear hyperbolic equations,, Arch. Ration. Mech. Anal., 30 (1968), 148. Google Scholar

[19]

E. Schrohe and J. Seiler, Ellipticity and invertibility in the cone algebra on $L_p$-Sobolev spaces,, Integral Equations Operator Theory, 41 (2001), 93. doi: 10.1007/BF01202533. Google Scholar

[20]

B.-W. Schulze, Boundary Value Problems and Singular Pseudo-Differential Operators,, J. Wiley, (1998). Google Scholar

[21]

J. A. Wheeler and W. H. Zurek, Quantum Theory and Measurements,, Princeton Univ. Press, (1983). doi: 10.1515/9781400854554. Google Scholar

[1]

Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089

[2]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[3]

Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103

[4]

Luigi Forcella, Kazumasa Fujiwara, Vladimir Georgiev, Tohru Ozawa. Local well-posedness and blow-up for the half Ginzburg-Landau-Kuramoto equation with rough coefficients and potential. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2661-2678. doi: 10.3934/dcds.2019111

[5]

Tarek Saanouni. A note on global well-posedness and blow-up of some semilinear evolution equations. Evolution Equations & Control Theory, 2015, 4 (3) : 355-372. doi: 10.3934/eect.2015.4.355

[6]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[7]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[8]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[9]

Júlia Matos. Unfocused blow up solutions of semilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 905-928. doi: 10.3934/dcds.1999.5.905

[10]

José M. Arrieta, Raúl Ferreira, Arturo de Pablo, Julio D. Rossi. Stability of the blow-up time and the blow-up set under perturbations. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 43-61. doi: 10.3934/dcds.2010.26.43

[11]

Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315

[12]

Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585

[13]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[14]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[15]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[16]

Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119

[17]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

[18]

Shota Sato. Blow-up at space infinity of a solution with a moving singularity for a semilinear parabolic equation. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1225-1237. doi: 10.3934/cpaa.2011.10.1225

[19]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[20]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]