August  2016, 36(8): 4599-4618. doi: 10.3934/dcds.2016.36.4599

Numerical algorithms for stationary statistical properties of dissipative dynamical systems

1. 

Department of Mathematics, The Florida State University, Tallahassee, FL 32306-4510

Received  May 2015 Revised  February 2016 Published  March 2016

It is well-known that physical laws for large chaotic dynamical systems are revealed statistically. The main concern of this manuscript is numerical methods for dissipative chaotic infinite dimensional dynamical systems that are able to capture the stationary statistical properties of the underlying dynamical systems. We first survey results on temporal and spatial approximations that enjoy the desired properties. We then present a new result on fully discretized approximations of infinite dimensional dissipative chaotic dynamical systems that are able to capture asymptotically the stationary statistical properties. The main ingredients in ensuring the convergence of the long time statistical properties of the numerical schemes are: (1) uniform dissipativity of the scheme in the sense that the union of the global attractors of the numerical approximations is pre-compact in the phase space; (2) convergence of the solutions of the numerical scheme to the solution of the continuous system on the unit time interval $[0,1]$ modulo an initial layer, uniformly with respect to initial data from the union of the global attractors. The two conditions are reminiscent of the Lax equivalence theorem where stability and consistency are needed for the convergence of a numerical scheme. Applications to the complex Ginzburg-Landau equation and the two-dimensional Navier-Stokes equations in a periodic box are discussed.
Citation: Xiaoming Wang. Numerical algorithms for stationary statistical properties of dissipative dynamical systems. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4599-4618. doi: 10.3934/dcds.2016.36.4599
References:
[1]

P. Billingsley, Weak Convergence of Measures: Applications in Probability,, SIAM, (1971). Google Scholar

[2]

E. Cancs, E. Legoll and G. Stoltz, Theoretical and numerical comparison of some sampling methods for molecular dynamics,, ESAIM: Mathematical Modelling and Numerical Analysis, 41 (2007), 351. doi: 10.1051/m2an:2007014. Google Scholar

[3]

W. Cheng and X. Wang, A uniformly dissipative scheme for stationary statistical properties of the infinite prandtl number model,, Applied Mathematics Letters, 21 (2008), 1281. doi: 10.1016/j.aml.2007.07.036. Google Scholar

[4]

W. Cheng and X. Wang, A semi-implicit scheme for stationary statistical properties of the infinite Prandtl number model,, SIAM J. Num. Anal., 47 (2008), 250. doi: 10.1137/080713501. Google Scholar

[5]

C. Chiu, Q. Du and T. Y. Li, Error estimates of the Markov finite approximation of the Frobenius-Perron operator,, Nonlinear Anal., 19 (1992), 291. doi: 10.1016/0362-546X(92)90175-E. Google Scholar

[6]

A. Chorin, Vorticity and Turbulence,, Springer-Verlag, (1994). doi: 10.1007/978-1-4419-8728-0. Google Scholar

[7]

P. Constantin and C. Foias, Navier-Stokes Equations,, The University of Chicago Press, (1988). Google Scholar

[8]

W. E and D. Li, The Andersen thermostat in molecular dynamics,, Comm. Pure Appl. Math., 61 (2008), 96. doi: 10.1002/cpa.20198. Google Scholar

[9]

C. Foias, M. Jolly, I. G. Kevrekidis and E. S. Titi, Dissipativity of numerical schemes,, Nonlinearity, 4 (1991), 591. doi: 10.1088/0951-7715/4/3/001. Google Scholar

[10]

C. Foias, M. Jolly, I. G. Kevrekidis and E. S. Titi, On some dissipative fully discrete nonlinear Galerkin schemes for the Kuramoto-Sivashinsky equation,, Phys. Lett. A, 186 (1994), 87. doi: 10.1016/0375-9601(94)90926-1. Google Scholar

[11]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Encyclopedia of Mathematics and its Applications, (2001). doi: 10.1017/CBO9780511546754. Google Scholar

[12]

T. Geveci, On the convergence of a time discretization scheme for the Navier-Stokes equations,, Math. Comp., 53 (1989), 43. doi: 10.1090/S0025-5718-1989-0969488-5. Google Scholar

[13]

S. Gottlieb, F. Tone, C. Wang, X. Wang and D. Wirosoetisno, Long time stability of a classical efficient scheme for two dimensional Navier-Stokes equations,, SIAM J. Numer. Anal., 50 (2012), 126. doi: 10.1137/110834901. Google Scholar

[14]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Providence, (1988). Google Scholar

[15]

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time,, SIAM J. Numer. Anal., 23 (1986), 750. doi: 10.1137/0723049. Google Scholar

[16]

A. T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equation,, IMA J. Numer. Anal., 20 (2000), 663. doi: 10.1093/imanum/20.4.633. Google Scholar

[17]

D. A. Jones, A. M. Stuart and E. S. Titi, Persistence of invariant sets for dissipative evolution equations,, J. Math. Anal. Appl., 219 (1998), 479. doi: 10.1006/jmaa.1997.5847. Google Scholar

[18]

N. Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations,, IMA J. Numer. Anal., 22 (2002), 577. doi: 10.1093/imanum/22.4.577. Google Scholar

[19]

L. P. Kadanoff, Turbulent heat flow: Structures and scaling,, Physics Today, 54 (2001), 34. doi: 10.1063/1.1404847. Google Scholar

[20]

S. Larsson, The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems,, SIAM J. Numer. Anal., 26 (1989), 348. doi: 10.1137/0726019. Google Scholar

[21]

A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Stochastic Aspects of Dynamics, 2nd, ed., New York, (1994). doi: 10.1007/978-1-4612-4286-4. Google Scholar

[22]

P. D. Lax, Functional Analysis,, New York : Wiley, (2002). Google Scholar

[23]

P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations,, Comm. Pure Appl. Math., 9 (1956), 267. doi: 10.1002/cpa.3160090206. Google Scholar

[24]

G. J. Lord, Attractors and inertial manifolds for finite-difference approximation of the complex Ginzburg-Landau equation,, SIAM J. Numer. Anal., 34 (1997), 1483. doi: 10.1137/S003614299528554X. Google Scholar

[25]

G. J. Lord and A. M. Stuart, Discrete Gevrey regularity, attractors and upper-semicontinuity for a finite-difference approximation to the Ginzburg-Landau equation,, Numer. Funct. Anal. Optim., 16 (1995), 1003. doi: 10.1080/01630569508816658. Google Scholar

[26]

A. J. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002). Google Scholar

[27]

A. J. Majda and X. Wang, Nonlinear Dynamics and Statistical Theory for Basic Geophysical Flows,, Cambridge University Press, (2006). doi: 10.1017/CBO9780511616778. Google Scholar

[28]

A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics; Mechanics of Turbulence,, English ed. updated, (1975). Google Scholar

[29]

G. Raugel, Global attractors in partial differential equations,, in Handbook of dynamical systems, 2 (2002), 885. doi: 10.1016/S1874-575X(02)80038-8. Google Scholar

[30]

S. Reich, Backward error analysis for numerical integrators,, SIAM J. Numer. Anal., 36 (1999), 1549. doi: 10.1137/S0036142997329797. Google Scholar

[31]

J. Shen, Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations,, Numer. Funct. Anal. and Optimiz., 10 (1989), 1213. doi: 10.1080/01630568908816354. Google Scholar

[32]

J. Shen, Long time stabilities and convergences for the fully discrete nonlinear Galerkin methods,, Appl. Anal., 38 (1990), 201. doi: 10.1080/00036819008839963. Google Scholar

[33]

H. Sigurgeirsson and A. M. Stuart, Statistics from computations,, in Foundations of Computational Mathematics, 284 (2001), 323. Google Scholar

[34]

A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis,, Cambridge University Press, (1996). Google Scholar

[35]

D. Talay, Simulation of stochastic differential systems,, in Probabilistic Methods in Applied Physics, 451 (1995), 54. doi: 10.1007/3-540-60214-3_51. Google Scholar

[36]

R. M. Temam, Sur l'approximation des solutions des équations de Navier-Stokes,, C.R. Acad. Sci., 262 (1966), 219. Google Scholar

[37]

R. M. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edition,, CBMS-SIAM, (1995). doi: 10.1137/1.9781611970050. Google Scholar

[38]

R. M. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, 2nd ed. Springer-Verlag, (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar

[39]

F. Tone and X. Wang, Approximation of the stationary statistical properties of the dynamical systems generated by the two-dimensional Rayleigh-Benard convection problem,, Analysis and Applications, 9 (2011), 421. doi: 10.1142/S0219530511001935. Google Scholar

[40]

F. Tone, X. Wang and D. Wirosoetisno, Long-time dynamics of 2d double-diffusive convection: Analysis and/of numerics,, Numer. Math., 130 (2015), 541. doi: 10.1007/s00211-014-0670-9. Google Scholar

[41]

F. Tone and D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations,, SIAM J. Num. Anal., 44 (2006), 29. doi: 10.1137/040618527. Google Scholar

[42]

P. F. Tupper, Ergodicity and the numerical simulation of Hamiltonian systems,, SIAM J. Applied Dynamical Systems, 4 (2005), 563. doi: 10.1137/040603802. Google Scholar

[43]

M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics,, Kluwer Acad. Publishers, (1988). doi: 10.1007/978-94-009-1423-0. Google Scholar

[44]

P. Walters, An introduction to ergodic theory,, Springer-Verlag, (1982). Google Scholar

[45]

X. Wang, Infinite Prandtl number limit of Rayleigh-Bénard convection,, Comm. Pure and Appl. Math., 57 (2004), 1265. doi: 10.1002/cpa.3047. Google Scholar

[46]

X. Wang, Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number,, Comm. Pure and Appl. Math., 61 (2008), 789. doi: 10.1002/cpa.20214. Google Scholar

[47]

X. Wang, Upper Semi-Continuity of Stationary Statistical Properties of Dissipative Systems,, Dedicated to Prof. Li Ta-Tsien on the occasion of his 70th birthday, 23 (2009), 521. doi: 10.3934/dcds.2009.23.521. Google Scholar

[48]

X. Wang, Approximating stationary statistical properties,, Chinese Ann. Math. Series B, 30 (2009), 831. doi: 10.1007/s11401-009-0178-2. Google Scholar

[49]

X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization,, Math. Comp., 79 (2010), 259. doi: 10.1090/S0025-5718-09-02256-X. Google Scholar

[50]

X. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations,, Numer. Math., 121 (2012), 753. doi: 10.1007/s00211-012-0450-3. Google Scholar

[51]

Y. Yan, Attractors and error estimates for discretizations of incompressible Navier-Stokes equations,, SIAM J. Numer. Anal., 33 (1996), 1451. doi: 10.1137/S0036142993248092. Google Scholar

show all references

References:
[1]

P. Billingsley, Weak Convergence of Measures: Applications in Probability,, SIAM, (1971). Google Scholar

[2]

E. Cancs, E. Legoll and G. Stoltz, Theoretical and numerical comparison of some sampling methods for molecular dynamics,, ESAIM: Mathematical Modelling and Numerical Analysis, 41 (2007), 351. doi: 10.1051/m2an:2007014. Google Scholar

[3]

W. Cheng and X. Wang, A uniformly dissipative scheme for stationary statistical properties of the infinite prandtl number model,, Applied Mathematics Letters, 21 (2008), 1281. doi: 10.1016/j.aml.2007.07.036. Google Scholar

[4]

W. Cheng and X. Wang, A semi-implicit scheme for stationary statistical properties of the infinite Prandtl number model,, SIAM J. Num. Anal., 47 (2008), 250. doi: 10.1137/080713501. Google Scholar

[5]

C. Chiu, Q. Du and T. Y. Li, Error estimates of the Markov finite approximation of the Frobenius-Perron operator,, Nonlinear Anal., 19 (1992), 291. doi: 10.1016/0362-546X(92)90175-E. Google Scholar

[6]

A. Chorin, Vorticity and Turbulence,, Springer-Verlag, (1994). doi: 10.1007/978-1-4419-8728-0. Google Scholar

[7]

P. Constantin and C. Foias, Navier-Stokes Equations,, The University of Chicago Press, (1988). Google Scholar

[8]

W. E and D. Li, The Andersen thermostat in molecular dynamics,, Comm. Pure Appl. Math., 61 (2008), 96. doi: 10.1002/cpa.20198. Google Scholar

[9]

C. Foias, M. Jolly, I. G. Kevrekidis and E. S. Titi, Dissipativity of numerical schemes,, Nonlinearity, 4 (1991), 591. doi: 10.1088/0951-7715/4/3/001. Google Scholar

[10]

C. Foias, M. Jolly, I. G. Kevrekidis and E. S. Titi, On some dissipative fully discrete nonlinear Galerkin schemes for the Kuramoto-Sivashinsky equation,, Phys. Lett. A, 186 (1994), 87. doi: 10.1016/0375-9601(94)90926-1. Google Scholar

[11]

C. Foias, O. Manley, R. Rosa and R. Temam, Navier-Stokes Equations and Turbulence,, Encyclopedia of Mathematics and its Applications, (2001). doi: 10.1017/CBO9780511546754. Google Scholar

[12]

T. Geveci, On the convergence of a time discretization scheme for the Navier-Stokes equations,, Math. Comp., 53 (1989), 43. doi: 10.1090/S0025-5718-1989-0969488-5. Google Scholar

[13]

S. Gottlieb, F. Tone, C. Wang, X. Wang and D. Wirosoetisno, Long time stability of a classical efficient scheme for two dimensional Navier-Stokes equations,, SIAM J. Numer. Anal., 50 (2012), 126. doi: 10.1137/110834901. Google Scholar

[14]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, Providence, (1988). Google Scholar

[15]

J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time,, SIAM J. Numer. Anal., 23 (1986), 750. doi: 10.1137/0723049. Google Scholar

[16]

A. T. Hill and E. Süli, Approximation of the global attractor for the incompressible Navier-Stokes equation,, IMA J. Numer. Anal., 20 (2000), 663. doi: 10.1093/imanum/20.4.633. Google Scholar

[17]

D. A. Jones, A. M. Stuart and E. S. Titi, Persistence of invariant sets for dissipative evolution equations,, J. Math. Anal. Appl., 219 (1998), 479. doi: 10.1006/jmaa.1997.5847. Google Scholar

[18]

N. Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations,, IMA J. Numer. Anal., 22 (2002), 577. doi: 10.1093/imanum/22.4.577. Google Scholar

[19]

L. P. Kadanoff, Turbulent heat flow: Structures and scaling,, Physics Today, 54 (2001), 34. doi: 10.1063/1.1404847. Google Scholar

[20]

S. Larsson, The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems,, SIAM J. Numer. Anal., 26 (1989), 348. doi: 10.1137/0726019. Google Scholar

[21]

A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise, Stochastic Aspects of Dynamics, 2nd, ed., New York, (1994). doi: 10.1007/978-1-4612-4286-4. Google Scholar

[22]

P. D. Lax, Functional Analysis,, New York : Wiley, (2002). Google Scholar

[23]

P. D. Lax and R. D. Richtmyer, Survey of the stability of linear finite difference equations,, Comm. Pure Appl. Math., 9 (1956), 267. doi: 10.1002/cpa.3160090206. Google Scholar

[24]

G. J. Lord, Attractors and inertial manifolds for finite-difference approximation of the complex Ginzburg-Landau equation,, SIAM J. Numer. Anal., 34 (1997), 1483. doi: 10.1137/S003614299528554X. Google Scholar

[25]

G. J. Lord and A. M. Stuart, Discrete Gevrey regularity, attractors and upper-semicontinuity for a finite-difference approximation to the Ginzburg-Landau equation,, Numer. Funct. Anal. Optim., 16 (1995), 1003. doi: 10.1080/01630569508816658. Google Scholar

[26]

A. J. Majda and A. Bertozzi, Vorticity and Incompressible Flow,, Cambridge University Press, (2002). Google Scholar

[27]

A. J. Majda and X. Wang, Nonlinear Dynamics and Statistical Theory for Basic Geophysical Flows,, Cambridge University Press, (2006). doi: 10.1017/CBO9780511616778. Google Scholar

[28]

A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics; Mechanics of Turbulence,, English ed. updated, (1975). Google Scholar

[29]

G. Raugel, Global attractors in partial differential equations,, in Handbook of dynamical systems, 2 (2002), 885. doi: 10.1016/S1874-575X(02)80038-8. Google Scholar

[30]

S. Reich, Backward error analysis for numerical integrators,, SIAM J. Numer. Anal., 36 (1999), 1549. doi: 10.1137/S0036142997329797. Google Scholar

[31]

J. Shen, Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations,, Numer. Funct. Anal. and Optimiz., 10 (1989), 1213. doi: 10.1080/01630568908816354. Google Scholar

[32]

J. Shen, Long time stabilities and convergences for the fully discrete nonlinear Galerkin methods,, Appl. Anal., 38 (1990), 201. doi: 10.1080/00036819008839963. Google Scholar

[33]

H. Sigurgeirsson and A. M. Stuart, Statistics from computations,, in Foundations of Computational Mathematics, 284 (2001), 323. Google Scholar

[34]

A. M. Stuart and A. R. Humphries, Dynamical Systems and Numerical Analysis,, Cambridge University Press, (1996). Google Scholar

[35]

D. Talay, Simulation of stochastic differential systems,, in Probabilistic Methods in Applied Physics, 451 (1995), 54. doi: 10.1007/3-540-60214-3_51. Google Scholar

[36]

R. M. Temam, Sur l'approximation des solutions des équations de Navier-Stokes,, C.R. Acad. Sci., 262 (1966), 219. Google Scholar

[37]

R. M. Temam, Navier-Stokes Equations and Nonlinear Functional Analysis, 2nd edition,, CBMS-SIAM, (1995). doi: 10.1137/1.9781611970050. Google Scholar

[38]

R. M. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics,, 2nd ed. Springer-Verlag, (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar

[39]

F. Tone and X. Wang, Approximation of the stationary statistical properties of the dynamical systems generated by the two-dimensional Rayleigh-Benard convection problem,, Analysis and Applications, 9 (2011), 421. doi: 10.1142/S0219530511001935. Google Scholar

[40]

F. Tone, X. Wang and D. Wirosoetisno, Long-time dynamics of 2d double-diffusive convection: Analysis and/of numerics,, Numer. Math., 130 (2015), 541. doi: 10.1007/s00211-014-0670-9. Google Scholar

[41]

F. Tone and D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations,, SIAM J. Num. Anal., 44 (2006), 29. doi: 10.1137/040618527. Google Scholar

[42]

P. F. Tupper, Ergodicity and the numerical simulation of Hamiltonian systems,, SIAM J. Applied Dynamical Systems, 4 (2005), 563. doi: 10.1137/040603802. Google Scholar

[43]

M. I. Vishik and A. V. Fursikov, Mathematical Problems of Statistical Hydromechanics,, Kluwer Acad. Publishers, (1988). doi: 10.1007/978-94-009-1423-0. Google Scholar

[44]

P. Walters, An introduction to ergodic theory,, Springer-Verlag, (1982). Google Scholar

[45]

X. Wang, Infinite Prandtl number limit of Rayleigh-Bénard convection,, Comm. Pure and Appl. Math., 57 (2004), 1265. doi: 10.1002/cpa.3047. Google Scholar

[46]

X. Wang, Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number,, Comm. Pure and Appl. Math., 61 (2008), 789. doi: 10.1002/cpa.20214. Google Scholar

[47]

X. Wang, Upper Semi-Continuity of Stationary Statistical Properties of Dissipative Systems,, Dedicated to Prof. Li Ta-Tsien on the occasion of his 70th birthday, 23 (2009), 521. doi: 10.3934/dcds.2009.23.521. Google Scholar

[48]

X. Wang, Approximating stationary statistical properties,, Chinese Ann. Math. Series B, 30 (2009), 831. doi: 10.1007/s11401-009-0178-2. Google Scholar

[49]

X. Wang, Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization,, Math. Comp., 79 (2010), 259. doi: 10.1090/S0025-5718-09-02256-X. Google Scholar

[50]

X. Wang, An efficient second order in time scheme for approximating long time statistical properties of the two dimensional Navier-Stokes equations,, Numer. Math., 121 (2012), 753. doi: 10.1007/s00211-012-0450-3. Google Scholar

[51]

Y. Yan, Attractors and error estimates for discretizations of incompressible Navier-Stokes equations,, SIAM J. Numer. Anal., 33 (1996), 1451. doi: 10.1137/S0036142993248092. Google Scholar

[1]

P.E. Kloeden, Pedro Marín-Rubio, José Real. Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations. Communications on Pure & Applied Analysis, 2009, 8 (3) : 785-802. doi: 10.3934/cpaa.2009.8.785

[2]

Sen-Zhong Huang, Peter Takáč. Global smooth solutions of the complex Ginzburg-Landau equation and their dynamical properties. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 825-848. doi: 10.3934/dcds.1999.5.825

[3]

Hong Lu, Shujuan Lü, Mingji Zhang. Fourier spectral approximations to the dynamics of 3D fractional complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2539-2564. doi: 10.3934/dcds.2017109

[4]

Tomás Caraballo, Peter E. Kloeden, José Real. Invariant measures and Statistical solutions of the globally modified Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2008, 10 (4) : 761-781. doi: 10.3934/dcdsb.2008.10.761

[5]

Michael Stich, Carsten Beta. Standing waves in a complex Ginzburg-Landau equation with time-delay feedback. Conference Publications, 2011, 2011 (Special) : 1329-1334. doi: 10.3934/proc.2011.2011.1329

[6]

Dingshi Li, Lin Shi, Xiaohu Wang. Long term behavior of stochastic discrete complex Ginzburg-Landau equations with time delays in weighted spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 5121-5148. doi: 10.3934/dcdsb.2019046

[7]

N. I. Karachalios, Hector E. Nistazakis, Athanasios N. Yannacopoulos. Asymptotic behavior of solutions of complex discrete evolution equations: The discrete Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (4) : 711-736. doi: 10.3934/dcds.2007.19.711

[8]

Hans G. Kaper, Peter Takáč. Bifurcating vortex solutions of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 1999, 5 (4) : 871-880. doi: 10.3934/dcds.1999.5.871

[9]

Noboru Okazawa, Tomomi Yokota. Subdifferential operator approach to strong wellposedness of the complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 311-341. doi: 10.3934/dcds.2010.28.311

[10]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[11]

N. I. Karachalios, H. E. Nistazakis, A. N. Yannacopoulos. Remarks on the asymptotic behavior of solutions of complex discrete Ginzburg-Landau equations. Conference Publications, 2005, 2005 (Special) : 476-486. doi: 10.3934/proc.2005.2005.476

[12]

Yuta Kugo, Motohiro Sobajima, Toshiyuki Suzuki, Tomomi Yokota, Kentarou Yoshii. Solvability of a class of complex Ginzburg-Landau equations in periodic Sobolev spaces. Conference Publications, 2015, 2015 (special) : 754-763. doi: 10.3934/proc.2015.0754

[13]

Hi Jun Choe, Hyea Hyun Kim, Do Wan Kim, Yongsik Kim. Meshless method for the stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2001, 1 (4) : 495-526. doi: 10.3934/dcdsb.2001.1.495

[14]

Hi Jun Choe, Do Wan Kim, Yongsik Kim. Meshfree method for the non-stationary incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 17-39. doi: 10.3934/dcdsb.2006.6.17

[15]

Satoshi Kosugi, Yoshihisa Morita, Shoji Yotsutani. A complete bifurcation diagram of the Ginzburg-Landau equation with periodic boundary conditions. Communications on Pure & Applied Analysis, 2005, 4 (3) : 665-682. doi: 10.3934/cpaa.2005.4.665

[16]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[17]

Dmitry Turaev, Sergey Zelik. Analytical proof of space-time chaos in Ginzburg-Landau equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1713-1751. doi: 10.3934/dcds.2010.28.1713

[18]

Yinnian He, Yanping Lin, Weiwei Sun. Stabilized finite element method for the non-stationary Navier-Stokes problem. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 41-68. doi: 10.3934/dcdsb.2006.6.41

[19]

Francisco Guillén-González, Mouhamadou Samsidy Goudiaby. Stability and convergence at infinite time of several fully discrete schemes for a Ginzburg-Landau model for nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4229-4246. doi: 10.3934/dcds.2012.32.4229

[20]

Jie Tang, Ziqing Xie, Zhimin Zhang. The long time behavior of a spectral collocation method for delay differential equations of pantograph type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (3) : 797-819. doi: 10.3934/dcdsb.2013.18.797

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]