• Previous Article
    A drift-diffusion model for molecular motor transport in anisotropic filament bundles
  • DCDS Home
  • This Issue
  • Next Article
    Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws
August  2016, 36(8): 4569-4577. doi: 10.3934/dcds.2016.36.4569

The relative entropy method for the stability of intermediate shock waves; the rich case

1. 

UMPA, ENS-Lyon 46, allée d'Italie 69364 LYON Cedex 07, France

2. 

Department of Mathematics, University of Texas at Austin, 1 University Station – C1200, Austin, TX 78712-0257, United States

Received  April 2015 Revised  August 2015 Published  March 2016

M.-J. Kang and one of us [2] developed a new version of the relative entropy method, which is efficient in the study of the long-time stability of extreme shocks. When a system of conservation laws is rich, we show that this can be adapted to the case of intermediate shocks.
Citation: Denis Serre, Alexis F. Vasseur. The relative entropy method for the stability of intermediate shock waves; the rich case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4569-4577. doi: 10.3934/dcds.2016.36.4569
References:
[1]

S. Benzoni-Gavage, D. Serre and K. Zumbrun, Alternate Evans functions and viscous shock waves,, SIAM J. Math. Anal., 32 (2001), 929. doi: 10.1137/S0036141099361834. Google Scholar

[2]

M.-J. Kang and A. Vasseur, Criteria on contractions for entropic discontinuities of systems of conservation laws,, reprint, (2015). Google Scholar

[3]

P. D. Lax, Hyperbolic systems of conservation laws. II,, Comm. Pure Appl. Math., 10 (1957), 537. doi: 10.1002/cpa.3160100406. Google Scholar

[4]

N. Leger, $L^2$-stability estimates for shock solutions of scalar conservation laws using the relative entropy method,, Arch. Rational Mech. Anal., 199 (2011), 761. doi: 10.1007/s00205-010-0341-7. Google Scholar

[5]

N. Leger and A. Vasseur, Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations,, Arch. Ration. Mech. Anal., 201 (2011), 271. doi: 10.1007/s00205-011-0431-1. Google Scholar

[6]

T.-P. Liu, Pointwise convergence to $N$-waves for solutions of hyperbolic conservation laws,, Bull. Inst. Math. Acad. Sinica, 15 (1987), 1. Google Scholar

[7]

A. Majda, The stability of multidimensional shock fronts,, Memoirs Amer. Math. Soc., 41 (1983). doi: 10.1090/memo/0275. Google Scholar

[8]

A. Majda, The existence of multidimensional shock fronts,, Memoirs Amer. Math. Soc., 43 (1983). doi: 10.1090/memo/0281. Google Scholar

[9]

D. Serre, Richness and the classification of quasilinear hyperbolic systems. Multidimensional hyperbolic problems and computations (Minneapolis, MN, 1989),, IMA Vol. Math. Appl., 29 (1991), 315. doi: 10.1007/978-1-4613-9121-0_24. Google Scholar

[10]

D. Serre, Systems of Conservation Laws, II,, Cambridge Univ. Press, (2000). Google Scholar

[11]

D. Serre, The structure of dissipative viscous system of conservation laws,, PhysicaD, 239 (2010), 1381. doi: 10.1016/j.physd.2009.03.014. Google Scholar

[12]

D. Serre, Long-time stability in systems of conservation laws, using relative entropy/energy,, Arch. Ration. Mech. Anal., 219 (2016), 679. doi: 10.1007/s00205-015-0903-9. Google Scholar

[13]

D. Serre, A. Vasseur, $L^2$-type contraction for systems of conservation laws,, Journal de l'École polytechnique; Mathématiques, 1 (2014), 1. doi: 10.5802/jep.1. Google Scholar

show all references

References:
[1]

S. Benzoni-Gavage, D. Serre and K. Zumbrun, Alternate Evans functions and viscous shock waves,, SIAM J. Math. Anal., 32 (2001), 929. doi: 10.1137/S0036141099361834. Google Scholar

[2]

M.-J. Kang and A. Vasseur, Criteria on contractions for entropic discontinuities of systems of conservation laws,, reprint, (2015). Google Scholar

[3]

P. D. Lax, Hyperbolic systems of conservation laws. II,, Comm. Pure Appl. Math., 10 (1957), 537. doi: 10.1002/cpa.3160100406. Google Scholar

[4]

N. Leger, $L^2$-stability estimates for shock solutions of scalar conservation laws using the relative entropy method,, Arch. Rational Mech. Anal., 199 (2011), 761. doi: 10.1007/s00205-010-0341-7. Google Scholar

[5]

N. Leger and A. Vasseur, Relative entropy and the stability of shocks and contact discontinuities for systems of conservation laws with non-BV perturbations,, Arch. Ration. Mech. Anal., 201 (2011), 271. doi: 10.1007/s00205-011-0431-1. Google Scholar

[6]

T.-P. Liu, Pointwise convergence to $N$-waves for solutions of hyperbolic conservation laws,, Bull. Inst. Math. Acad. Sinica, 15 (1987), 1. Google Scholar

[7]

A. Majda, The stability of multidimensional shock fronts,, Memoirs Amer. Math. Soc., 41 (1983). doi: 10.1090/memo/0275. Google Scholar

[8]

A. Majda, The existence of multidimensional shock fronts,, Memoirs Amer. Math. Soc., 43 (1983). doi: 10.1090/memo/0281. Google Scholar

[9]

D. Serre, Richness and the classification of quasilinear hyperbolic systems. Multidimensional hyperbolic problems and computations (Minneapolis, MN, 1989),, IMA Vol. Math. Appl., 29 (1991), 315. doi: 10.1007/978-1-4613-9121-0_24. Google Scholar

[10]

D. Serre, Systems of Conservation Laws, II,, Cambridge Univ. Press, (2000). Google Scholar

[11]

D. Serre, The structure of dissipative viscous system of conservation laws,, PhysicaD, 239 (2010), 1381. doi: 10.1016/j.physd.2009.03.014. Google Scholar

[12]

D. Serre, Long-time stability in systems of conservation laws, using relative entropy/energy,, Arch. Ration. Mech. Anal., 219 (2016), 679. doi: 10.1007/s00205-015-0903-9. Google Scholar

[13]

D. Serre, A. Vasseur, $L^2$-type contraction for systems of conservation laws,, Journal de l'École polytechnique; Mathématiques, 1 (2014), 1. doi: 10.5802/jep.1. Google Scholar

[1]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[2]

Yue-Jun Peng, Yong-Fu Yang. Long-time behavior and stability of entropy solutions for linearly degenerate hyperbolic systems of rich type. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3683-3706. doi: 10.3934/dcds.2015.35.3683

[3]

Tai-Ping Liu, Shih-Hsien Yu. Hyperbolic conservation laws and dynamic systems. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 143-145. doi: 10.3934/dcds.2000.6.143

[4]

Alberto Bressan, Marta Lewicka. A uniqueness condition for hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 673-682. doi: 10.3934/dcds.2000.6.673

[5]

Gui-Qiang Chen, Monica Torres. On the structure of solutions of nonlinear hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1011-1036. doi: 10.3934/cpaa.2011.10.1011

[6]

Stefano Bianchini. A note on singular limits to hyperbolic systems of conservation laws. Communications on Pure & Applied Analysis, 2003, 2 (1) : 51-64. doi: 10.3934/cpaa.2003.2.51

[7]

Fumioki Asakura, Andrea Corli. The path decomposition technique for systems of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 15-32. doi: 10.3934/dcdss.2016.9.15

[8]

Eitan Tadmor. Perfect derivatives, conservative differences and entropy stable computation of hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4579-4598. doi: 10.3934/dcds.2016.36.4579

[9]

Mapundi K. Banda, Michael Herty. Numerical discretization of stabilization problems with boundary controls for systems of hyperbolic conservation laws. Mathematical Control & Related Fields, 2013, 3 (2) : 121-142. doi: 10.3934/mcrf.2013.3.121

[10]

Yu Zhang, Yanyan Zhang. Riemann problems for a class of coupled hyperbolic systems of conservation laws with a source term. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1523-1545. doi: 10.3934/cpaa.2019073

[11]

Stefano Bianchini, Elio Marconi. On the concentration of entropy for scalar conservation laws. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 73-88. doi: 10.3934/dcdss.2016.9.73

[12]

Kenta Nakamura, Tohru Nakamura, Shuichi Kawashima. Asymptotic stability of rarefaction waves for a hyperbolic system of balance laws. Kinetic & Related Models, 2019, 12 (4) : 923-944. doi: 10.3934/krm.2019035

[13]

Anupam Sen, T. Raja Sekhar. Structural stability of the Riemann solution for a strictly hyperbolic system of conservation laws with flux approximation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 931-942. doi: 10.3934/cpaa.2019045

[14]

Shuichi Kawashima, Shinya Nishibata, Masataka Nishikawa. Asymptotic stability of stationary waves for two-dimensional viscous conservation laws in half plane. Conference Publications, 2003, 2003 (Special) : 469-476. doi: 10.3934/proc.2003.2003.469

[15]

Xavier Litrico, Vincent Fromion, Gérard Scorletti. Robust feedforward boundary control of hyperbolic conservation laws. Networks & Heterogeneous Media, 2007, 2 (4) : 717-731. doi: 10.3934/nhm.2007.2.717

[16]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[17]

Weishi Liu. Multiple viscous wave fan profiles for Riemann solutions of hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 871-884. doi: 10.3934/dcds.2004.10.871

[18]

Paolo Baiti, Helge Kristian Jenssen. Blowup in $\mathbf{L^{\infty}}$ for a class of genuinely nonlinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 837-853. doi: 10.3934/dcds.2001.7.837

[19]

Tong Yang, Huijiang Zhao. Asymptotics toward strong rarefaction waves for $2\times 2$ systems of viscous conservation laws. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 251-282. doi: 10.3934/dcds.2005.12.251

[20]

Frederike Kissling, Christian Rohde. The computation of nonclassical shock waves with a heterogeneous multiscale method. Networks & Heterogeneous Media, 2010, 5 (3) : 661-674. doi: 10.3934/nhm.2010.5.661

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]