# American Institute of Mathematical Sciences

August  2016, 36(8): 4451-4476. doi: 10.3934/dcds.2016.36.4451

## Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients

 1 1200 E California Blvd, MC 9-94, California Institute of Technology, Pasadena, CA 91125, United States, United States

Received  June 2015 Revised  October 2015 Published  March 2016

This paper addresses a multi-scale finite element method for second order linear elliptic equations with rough coefficients, which is based on the compactness of the solution operator, and does not depend on any scale-separation or periodicity assumption of the coefficient. We consider a special type of basis functions, the multi-scale basis, which are harmonic on each element and show that they have optimal approximation property for fixed local boundary conditions. To build the optimal local boundary conditions, we introduce a set of interpolation basis functions, and reduce our problem to approximating the interpolation residual of the solution space on each edge of the coarse mesh. And this is achieved through the singular value decompositions of some local oversampling operators. Rigorous error control can be obtained through thresholding in constructing the basis functions. The optimal interpolation basis functions are also identified and they can be constructed by solving some local least square problems. Numerical results for several problems with rough coefficients and high contrast inclusions are presented to demonstrate the capacity of our method in identifying and exploiting the compact structure of the local solution space to achieve computational savings.
Citation: Thomas Y. Hou, Pengfei Liu. Optimal local multi-scale basis functions for linear elliptic equations with rough coefficients. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4451-4476. doi: 10.3934/dcds.2016.36.4451
##### References:
 [1] G. Allaire, Homogenization and two-scale convergence,, SIAM Journal on Mathematical Analysis, 23 (1992), 1482. doi: 10.1137/0523084. Google Scholar [2] G. Allaire, Shape optimization by the homogenization method, vol. 146,, Springer Science & Business Media, (2012). doi: 10.1007/978-1-4684-9286-6. Google Scholar [3] G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization,, Multiscale Modeling & Simulation, 4 (2005), 790. doi: 10.1137/040611239. Google Scholar [4] I. Babuška, G. Caloz and J. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients,, SIAM Journal on Numerical Analysis, 31 (1994), 945. doi: 10.1137/0731051. Google Scholar [5] I. Babuška, X. Huang and R. Lipton, Machine computation using the exponentially convergent multiscale spectral generalized finite element method,, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 493. doi: 10.1051/m2an/2013117. Google Scholar [6] I. Babuska and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems,, Multiscale Modeling & Simulation, 9 (2011), 373. doi: 10.1137/100791051. Google Scholar [7] I. Babuška and J. Osborn, Generalized finite element methods: Their performance and their relation to mixed methods,, SIAM Journal on Numerical Analysis, 20 (1983), 510. doi: 10.1137/0720034. Google Scholar [8] I. Babuška and J. Osborn, Can a finite element method perform arbitrarily badly?,, Mathematics of Computation of the American Mathematical Society, 69 (2000), 443. doi: 10.1090/S0025-5718-99-01085-6. Google Scholar [9] A. Bensoussan, J. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, vol. 374,, American Mathematical Soc., (2011). Google Scholar [10] L. Berlyand and H. Owhadi, Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast,, Archive for rational mechanics and analysis, 198 (2010), 677. doi: 10.1007/s00205-010-0302-1. Google Scholar [11] Z. Chen and T. Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients,, Mathematics of Computation, 72 (2003), 541. doi: 10.1090/S0025-5718-02-01441-2. Google Scholar [12] C. Chu, I. Graham and T. Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems,, Mathematics of Computation, 79 (2010), 1915. doi: 10.1090/S0025-5718-2010-02372-5. Google Scholar [13] J. Chu, Y. Efendiev, V. Ginting and T. Y. Hou, Flow based oversampling technique for multiscale finite element methods,, Advances in Water Resources, 31 (2008), 599. doi: 10.1016/j.advwatres.2007.11.005. Google Scholar [14] M. Ci, T. Y. Hou and Z. Shi, A multiscale model reduction method for partial differential equations,, ESAIM-Mathematical Modelling and Numerical Analysis, 48 (2014), 449. doi: 10.1051/m2an/2013115. Google Scholar [15] D. Cioranescu and P. Donato, Introduction to, homogenization., (). Google Scholar [16] E. De Giorgi, New problems in $\gamma$-convergence and g-convergence,, Free boundary problems, 2 (1980), 183. Google Scholar [17] E. De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area,, Ennio De Giorgi, (). Google Scholar [18] Y. Efendiev, V. Ginting, T. Y. Hou and R. Ewing, Accurate multiscale finite element methods for two-phase flow simulations,, Journal of Computational Physics, 220 (2006), 155. doi: 10.1016/j.jcp.2006.05.015. Google Scholar [19] Y. Efendiev and T. Y. Hou, Multiscale finite element methods for porous media flows and their applications,, Applied Numerical Mathematics, 57 (2007), 577. doi: 10.1016/j.apnum.2006.07.009. Google Scholar [20] Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods: Theory and Applications, vol. 4,, Springer Science & Business Media, (2009). Google Scholar [21] Y. Efendiev, T. Y. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications,, Communications in Mathematical Sciences, 2 (2004), 553. doi: 10.4310/CMS.2004.v2.n4.a2. Google Scholar [22] Y. Efendiev, T. Y. Hou and X. Wu, Convergence of a nonconforming multiscale finite element method,, SIAM Journal on Numerical Analysis, 37 (2000), 888. doi: 10.1137/S0036142997330329. Google Scholar [23] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, vol. 224,, Springer Science & Business Media, (2001). Google Scholar [24] A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies,, Multiscale Modeling & Simulation, 5 (2006), 996. doi: 10.1137/060649112. Google Scholar [25] P. Henning and D. Peterseim, Oversampling for the multiscale finite element method,, Multiscale Modeling & Simulation, 11 (2013), 1149. doi: 10.1137/120900332. Google Scholar [26] T. Y. Hou and P. Liu, A heterogeneous stochastic fem framework for elliptic pdes,, Journal of Computational Physics, 281 (2015), 942. doi: 10.1016/j.jcp.2014.10.020. Google Scholar [27] T. Y. Hou, P. Liu and Z. Zhang, A model reduction method for elliptic pdes with random input using the heterogeneous stochastic fem framework,, Bulletin of the Institute of Mathematics, 11 (2016), 179. Google Scholar [28] T. Y. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media,, Journal of computational physics, 134 (1997), 169. doi: 10.1006/jcph.1997.5682. Google Scholar [29] T. Y. Hou, X. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients,, Mathematics of Computation of the American Mathematical Society, 68 (1999), 913. doi: 10.1090/S0025-5718-99-01077-7. Google Scholar [30] T. Y. Hou, X. Wu and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a petrov-galerkin formulation,, Communications in Mathematical Sciences, 2 (2004), 185. doi: 10.4310/CMS.2004.v2.n2.a3. Google Scholar [31] P. Jenny, S. Lee and H. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation,, Journal of Computational Physics, 187 (2003), 47. doi: 10.1016/S0021-9991(03)00075-5. Google Scholar [32] P. Jenny, S. Lee and H. Tchelepi, Adaptive multiscale finite-volume method for multiphase flow and transport in porous media,, Multiscale Modeling & Simulation, 3 (2005), 50. doi: 10.1137/030600795. Google Scholar [33] V. Jikov, S. Kozlov and O. Oleinik, Homogenization of Differential Operators and Integral Functionals,, Springer Science & Business Media, (2012). doi: 10.1007/978-3-642-84659-5. Google Scholar [34] S. Kozlov, Averaging of random operators,, Matematicheskii Sbornik, 151 (1979), 188. Google Scholar [35] I. Lunati and P. Jenny, Multiscale finite-volume method for compressible multiphase flow in porous media,, Journal of Computational Physics, 216 (2006), 616. doi: 10.1016/j.jcp.2006.01.001. Google Scholar [36] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems,, Mathematics of Computation, 83 (2014), 2583. doi: 10.1090/S0025-5718-2014-02868-8. Google Scholar [37] J. Melenk, On n-widths for elliptic problems,, Journal of mathematical analysis and applications, 247 (2000), 272. doi: 10.1006/jmaa.2000.6862. Google Scholar [38] J. Melenk and I. Babuška, The partition of unity finite element method: Basic theory and applications,, Computer methods in applied mechanics and engineering, 139 (1996), 289. doi: 10.1016/S0045-7825(96)01087-0. Google Scholar [39] R. Millward, A New Adaptive Multiscale Finite Element Method with Applications to High Contrast Interface Problems,, PhD thesis, (2011). Google Scholar [40] F. Murat, Compacité par compensation,, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 5 (1978), 489. Google Scholar [41] F. Murat and L. Tartar, H-convergence,, Springer, (1997). Google Scholar [42] H. Owhadi, Bayesian numerical homogenization,, Multiscale Modeling & Simulation, 13 (2015), 812. doi: 10.1137/140974596. Google Scholar [43] H. Owhadi, Mult-grid with rough coefficients and multiresolution operator decomposition from hierarchical information games,, arXiv preprint arXiv:1503.03467., (). Google Scholar [44] H. Owhadi and L. Zhang, Metric-based upscaling,, Communications on Pure and Applied Mathematics, 60 (2007), 675. doi: 10.1002/cpa.20163. Google Scholar [45] H. Owhadi, L. Zhang and L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization,, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 517. doi: 10.1051/m2an/2013118. Google Scholar [46] N. Panasenko and N. Bakhvalov, Homogenization: Averaging processes in periodic media: Mathematical problems in the mechanics of composite materials,, 1989., (). doi: 10.1007/978-94-009-2247-1. Google Scholar [47] D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors,, , (). Google Scholar [48] A. Pinkus, $n$-Width in Approximation Theory,, Springer, (1985). doi: 10.1007/978-3-642-69894-1. Google Scholar [49] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 22 (1968), 571. Google Scholar [50] S. Spagnolo, Convergence in energy for elliptic operators,, Numerical Solutions of Partial Differential Equations III, (). Google Scholar

show all references

##### References:
 [1] G. Allaire, Homogenization and two-scale convergence,, SIAM Journal on Mathematical Analysis, 23 (1992), 1482. doi: 10.1137/0523084. Google Scholar [2] G. Allaire, Shape optimization by the homogenization method, vol. 146,, Springer Science & Business Media, (2012). doi: 10.1007/978-1-4684-9286-6. Google Scholar [3] G. Allaire and R. Brizzi, A multiscale finite element method for numerical homogenization,, Multiscale Modeling & Simulation, 4 (2005), 790. doi: 10.1137/040611239. Google Scholar [4] I. Babuška, G. Caloz and J. Osborn, Special finite element methods for a class of second order elliptic problems with rough coefficients,, SIAM Journal on Numerical Analysis, 31 (1994), 945. doi: 10.1137/0731051. Google Scholar [5] I. Babuška, X. Huang and R. Lipton, Machine computation using the exponentially convergent multiscale spectral generalized finite element method,, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 493. doi: 10.1051/m2an/2013117. Google Scholar [6] I. Babuska and R. Lipton, Optimal local approximation spaces for generalized finite element methods with application to multiscale problems,, Multiscale Modeling & Simulation, 9 (2011), 373. doi: 10.1137/100791051. Google Scholar [7] I. Babuška and J. Osborn, Generalized finite element methods: Their performance and their relation to mixed methods,, SIAM Journal on Numerical Analysis, 20 (1983), 510. doi: 10.1137/0720034. Google Scholar [8] I. Babuška and J. Osborn, Can a finite element method perform arbitrarily badly?,, Mathematics of Computation of the American Mathematical Society, 69 (2000), 443. doi: 10.1090/S0025-5718-99-01085-6. Google Scholar [9] A. Bensoussan, J. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, vol. 374,, American Mathematical Soc., (2011). Google Scholar [10] L. Berlyand and H. Owhadi, Flux norm approach to finite dimensional homogenization approximations with non-separated scales and high contrast,, Archive for rational mechanics and analysis, 198 (2010), 677. doi: 10.1007/s00205-010-0302-1. Google Scholar [11] Z. Chen and T. Y. Hou, A mixed multiscale finite element method for elliptic problems with oscillating coefficients,, Mathematics of Computation, 72 (2003), 541. doi: 10.1090/S0025-5718-02-01441-2. Google Scholar [12] C. Chu, I. Graham and T. Y. Hou, A new multiscale finite element method for high-contrast elliptic interface problems,, Mathematics of Computation, 79 (2010), 1915. doi: 10.1090/S0025-5718-2010-02372-5. Google Scholar [13] J. Chu, Y. Efendiev, V. Ginting and T. Y. Hou, Flow based oversampling technique for multiscale finite element methods,, Advances in Water Resources, 31 (2008), 599. doi: 10.1016/j.advwatres.2007.11.005. Google Scholar [14] M. Ci, T. Y. Hou and Z. Shi, A multiscale model reduction method for partial differential equations,, ESAIM-Mathematical Modelling and Numerical Analysis, 48 (2014), 449. doi: 10.1051/m2an/2013115. Google Scholar [15] D. Cioranescu and P. Donato, Introduction to, homogenization., (). Google Scholar [16] E. De Giorgi, New problems in $\gamma$-convergence and g-convergence,, Free boundary problems, 2 (1980), 183. Google Scholar [17] E. De Giorgi, Sulla convergenza di alcune successioni d'integrali del tipo dell'area,, Ennio De Giorgi, (). Google Scholar [18] Y. Efendiev, V. Ginting, T. Y. Hou and R. Ewing, Accurate multiscale finite element methods for two-phase flow simulations,, Journal of Computational Physics, 220 (2006), 155. doi: 10.1016/j.jcp.2006.05.015. Google Scholar [19] Y. Efendiev and T. Y. Hou, Multiscale finite element methods for porous media flows and their applications,, Applied Numerical Mathematics, 57 (2007), 577. doi: 10.1016/j.apnum.2006.07.009. Google Scholar [20] Y. Efendiev and T. Y. Hou, Multiscale Finite Element Methods: Theory and Applications, vol. 4,, Springer Science & Business Media, (2009). Google Scholar [21] Y. Efendiev, T. Y. Hou and V. Ginting, Multiscale finite element methods for nonlinear problems and their applications,, Communications in Mathematical Sciences, 2 (2004), 553. doi: 10.4310/CMS.2004.v2.n4.a2. Google Scholar [22] Y. Efendiev, T. Y. Hou and X. Wu, Convergence of a nonconforming multiscale finite element method,, SIAM Journal on Numerical Analysis, 37 (2000), 888. doi: 10.1137/S0036142997330329. Google Scholar [23] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, vol. 224,, Springer Science & Business Media, (2001). Google Scholar [24] A. Gloria, An analytical framework for the numerical homogenization of monotone elliptic operators and quasiconvex energies,, Multiscale Modeling & Simulation, 5 (2006), 996. doi: 10.1137/060649112. Google Scholar [25] P. Henning and D. Peterseim, Oversampling for the multiscale finite element method,, Multiscale Modeling & Simulation, 11 (2013), 1149. doi: 10.1137/120900332. Google Scholar [26] T. Y. Hou and P. Liu, A heterogeneous stochastic fem framework for elliptic pdes,, Journal of Computational Physics, 281 (2015), 942. doi: 10.1016/j.jcp.2014.10.020. Google Scholar [27] T. Y. Hou, P. Liu and Z. Zhang, A model reduction method for elliptic pdes with random input using the heterogeneous stochastic fem framework,, Bulletin of the Institute of Mathematics, 11 (2016), 179. Google Scholar [28] T. Y. Hou and X. Wu, A multiscale finite element method for elliptic problems in composite materials and porous media,, Journal of computational physics, 134 (1997), 169. doi: 10.1006/jcph.1997.5682. Google Scholar [29] T. Y. Hou, X. Wu and Z. Cai, Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients,, Mathematics of Computation of the American Mathematical Society, 68 (1999), 913. doi: 10.1090/S0025-5718-99-01077-7. Google Scholar [30] T. Y. Hou, X. Wu and Y. Zhang, Removing the cell resonance error in the multiscale finite element method via a petrov-galerkin formulation,, Communications in Mathematical Sciences, 2 (2004), 185. doi: 10.4310/CMS.2004.v2.n2.a3. Google Scholar [31] P. Jenny, S. Lee and H. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation,, Journal of Computational Physics, 187 (2003), 47. doi: 10.1016/S0021-9991(03)00075-5. Google Scholar [32] P. Jenny, S. Lee and H. Tchelepi, Adaptive multiscale finite-volume method for multiphase flow and transport in porous media,, Multiscale Modeling & Simulation, 3 (2005), 50. doi: 10.1137/030600795. Google Scholar [33] V. Jikov, S. Kozlov and O. Oleinik, Homogenization of Differential Operators and Integral Functionals,, Springer Science & Business Media, (2012). doi: 10.1007/978-3-642-84659-5. Google Scholar [34] S. Kozlov, Averaging of random operators,, Matematicheskii Sbornik, 151 (1979), 188. Google Scholar [35] I. Lunati and P. Jenny, Multiscale finite-volume method for compressible multiphase flow in porous media,, Journal of Computational Physics, 216 (2006), 616. doi: 10.1016/j.jcp.2006.01.001. Google Scholar [36] A. Målqvist and D. Peterseim, Localization of elliptic multiscale problems,, Mathematics of Computation, 83 (2014), 2583. doi: 10.1090/S0025-5718-2014-02868-8. Google Scholar [37] J. Melenk, On n-widths for elliptic problems,, Journal of mathematical analysis and applications, 247 (2000), 272. doi: 10.1006/jmaa.2000.6862. Google Scholar [38] J. Melenk and I. Babuška, The partition of unity finite element method: Basic theory and applications,, Computer methods in applied mechanics and engineering, 139 (1996), 289. doi: 10.1016/S0045-7825(96)01087-0. Google Scholar [39] R. Millward, A New Adaptive Multiscale Finite Element Method with Applications to High Contrast Interface Problems,, PhD thesis, (2011). Google Scholar [40] F. Murat, Compacité par compensation,, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 5 (1978), 489. Google Scholar [41] F. Murat and L. Tartar, H-convergence,, Springer, (1997). Google Scholar [42] H. Owhadi, Bayesian numerical homogenization,, Multiscale Modeling & Simulation, 13 (2015), 812. doi: 10.1137/140974596. Google Scholar [43] H. Owhadi, Mult-grid with rough coefficients and multiresolution operator decomposition from hierarchical information games,, arXiv preprint arXiv:1503.03467., (). Google Scholar [44] H. Owhadi and L. Zhang, Metric-based upscaling,, Communications on Pure and Applied Mathematics, 60 (2007), 675. doi: 10.1002/cpa.20163. Google Scholar [45] H. Owhadi, L. Zhang and L. Berlyand, Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization,, ESAIM: Mathematical Modelling and Numerical Analysis, 48 (2014), 517. doi: 10.1051/m2an/2013118. Google Scholar [46] N. Panasenko and N. Bakhvalov, Homogenization: Averaging processes in periodic media: Mathematical problems in the mechanics of composite materials,, 1989., (). doi: 10.1007/978-94-009-2247-1. Google Scholar [47] D. Peterseim, Variational multiscale stabilization and the exponential decay of fine-scale correctors,, , (). Google Scholar [48] A. Pinkus, $n$-Width in Approximation Theory,, Springer, (1985). doi: 10.1007/978-3-642-69894-1. Google Scholar [49] S. Spagnolo, Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche,, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 22 (1968), 571. Google Scholar [50] S. Spagnolo, Convergence in energy for elliptic operators,, Numerical Solutions of Partial Differential Equations III, (). Google Scholar
 [1] Eugene Kashdan, Svetlana Bunimovich-Mendrazitsky. Multi-scale model of bladder cancer development. Conference Publications, 2011, 2011 (Special) : 803-812. doi: 10.3934/proc.2011.2011.803 [2] Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013 [3] Thomas Blanc, Mihaï Bostan. Multi-scale analysis for highly anisotropic parabolic problems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019186 [4] Wen-ming He, Jun-zhi Cui. The estimate of the multi-scale homogenization method for Green's function on Sobolev space $W^{1,q}(\Omega)$. Communications on Pure & Applied Analysis, 2012, 11 (2) : 501-516. doi: 10.3934/cpaa.2012.11.501 [5] Thierry Cazenave, Flávio Dickstein, Fred B. Weissler. Multi-scale multi-profile global solutions of parabolic equations in $\mathbb{R}^N$. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 449-472. doi: 10.3934/dcdss.2012.5.449 [6] Emiliano Cristiani, Elisa Iacomini. An interface-free multi-scale multi-order model for traffic flow. Discrete & Continuous Dynamical Systems - B, 2019, 24 (11) : 6189-6207. doi: 10.3934/dcdsb.2019135 [7] Jean-Philippe Bernard, Emmanuel Frénod, Antoine Rousseau. Modeling confinement in Étang de Thau: Numerical simulations and multi-scale aspects. Conference Publications, 2013, 2013 (special) : 69-76. doi: 10.3934/proc.2013.2013.69 [8] Grigor Nika, Bogdan Vernescu. Rate of convergence for a multi-scale model of dilute emulsions with non-uniform surface tension. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1553-1564. doi: 10.3934/dcdss.2016062 [9] Thomas Blanc, Mihai Bostan, Franck Boyer. Asymptotic analysis of parabolic equations with stiff transport terms by a multi-scale approach. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4637-4676. doi: 10.3934/dcds.2017200 [10] Markus Gahn. Multi-scale modeling of processes in porous media - coupling reaction-diffusion processes in the solid and the fluid phase and on the separating interfaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (12) : 6511-6531. doi: 10.3934/dcdsb.2019151 [11] Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183 [12] Assyr Abdulle, Yun Bai, Gilles Vilmart. Reduced basis finite element heterogeneous multiscale method for quasilinear elliptic homogenization problems. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 91-118. doi: 10.3934/dcdss.2015.8.91 [13] Fang Liu, Aihui Zhou. Localizations and parallelizations for two-scale finite element discretizations. Communications on Pure & Applied Analysis, 2007, 6 (3) : 757-773. doi: 10.3934/cpaa.2007.6.757 [14] Heung Wing Joseph Lee, Chi Kin Chan, Karho Yau, Kar Hung Wong, Colin Myburgh. Control parametrization and finite element method for controlling multi-species reactive transport in a circular pool. Journal of Industrial & Management Optimization, 2013, 9 (3) : 505-524. doi: 10.3934/jimo.2013.9.505 [15] Hong Seng Sim, Wah June Leong, Chuei Yee Chen, Siti Nur Iqmal Ibrahim. Multi-step spectral gradient methods with modified weak secant relation for large scale unconstrained optimization. Numerical Algebra, Control & Optimization, 2018, 8 (3) : 377-387. doi: 10.3934/naco.2018024 [16] José Miguel Pasini, Tuhin Sahai. Polynomial chaos based uncertainty quantification in Hamiltonian, multi-time scale, and chaotic systems. Journal of Computational Dynamics, 2014, 1 (2) : 357-375. doi: 10.3934/jcd.2014.1.357 [17] Patrick Henning, Mario Ohlberger. The heterogeneous multiscale finite element method for advection-diffusion problems with rapidly oscillating coefficients and large expected drift. Networks & Heterogeneous Media, 2010, 5 (4) : 711-744. doi: 10.3934/nhm.2010.5.711 [18] Christos V. Nikolopoulos, Georgios E. Zouraris. Numerical solution of a non-local elliptic problem modeling a thermistor with a finite element and a finite volume method. Conference Publications, 2007, 2007 (Special) : 768-778. doi: 10.3934/proc.2007.2007.768 [19] Dominik Hafemeyer, Florian Mannel, Ira Neitzel, Boris Vexler. Finite element error estimates for one-dimensional elliptic optimal control by BV-functions. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019041 [20] Dong-Uk Hwang, S. Boccaletti, Y. Moreno, R. López-Ruiz. Thresholds for Epidemic Outbreaks in Finite Scale-Free Networks. Mathematical Biosciences & Engineering, 2005, 2 (2) : 317-327. doi: 10.3934/mbe.2005.2.317

2018 Impact Factor: 1.143