August  2016, 36(8): 4367-4382. doi: 10.3934/dcds.2016.36.4367

On the stability of time-domain integral equations for acoustic wave propagation

1. 

209 S. 33rd Street, Department of Mathematics, Philadelphia, PA, 19104-6395, United States

2. 

251 Mercer St, Courant Institute, NYU, New York, NY, 10012, United States

3. 

Dept. of Mathematics, Southern Methodist University, PO Box 750156, Dallas, TX 75275-0156, United States

Received  April 2015 Revised  October 2015 Published  March 2016

We give a principled approach for the selection of a boundary integral, retarded potential representation for the solution of scattering problems for the wave equation in an exterior domain.
Citation: Charles L. Epstein, Leslie Greengard, Thomas Hagstrom. On the stability of time-domain integral equations for acoustic wave propagation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4367-4382. doi: 10.3934/dcds.2016.36.4367
References:
[1]

D. Baskin, E. Spence and J. Wunsch, Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations,, SIAM J. Math. Anal., 48 (2016), 229. doi: 10.1137/15M102530X. Google Scholar

[2]

S. N. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time- harmonic scattering,, SIAM Journal on Mathematical Analysis, 39 (2008), 1428. doi: 10.1137/060662575. Google Scholar

[3]

M. Costabel, Time-dependent Problems with the Boundary Integral Equation Method,, in Encyclopedia of Computational Mechanics (eds. E. Stein, (2004). doi: 10.1002/0470091355.ecm022. Google Scholar

[4]

V. Dominguez and F. Sayas, Some properties of layer potentials and boundary integral operators for the wave equation,, J. Int. Equations Appl., 25 (2013), 253. doi: 10.1216/JIE-2013-25-2-253. Google Scholar

[5]

T. Ha-Duong, B. Ludwig and I. Terrasse, A Galerkin BEM for transient acoustic scattering by an absorbing obstacle,, Internat. J. Numer. Methods Engrg., 57 (2003), 1845. doi: 10.1002/nme.745. Google Scholar

[6]

T. Ha-Duong, On retarded potential boundary integral equations and their discretisation,, in Topics in computational wave propagation, (2003), 301. doi: 10.1007/978-3-642-55483-4_8. Google Scholar

[7]

R. Kress, Minimizing the condition number of boundary integral-operators in acoustic and electromagnetic scattering,, Q. J. Mech. Appl. Math., 38 (1985), 323. doi: 10.1093/qjmam/38.2.323. Google Scholar

[8]

P. D. Lax, C. S. Morawetz and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle,, Comm. Pure Appl. Math., 16 (1963), 477. doi: 10.1002/cpa.3160160407. Google Scholar

[9]

P. D. Lax and R. S. Phillips, Scattering Theory, vol. 26 of Pure and Applied Mathematics,, 2nd edition, (1989). Google Scholar

[10]

A. Ludwig and Y. Leviatan, Towards a stable two-dimensional time-domain source-model solution by use of a combined source formulation,, IEEE Trans. Antennas Propag., 54 (2006), 3010. doi: 10.1109/TAP.2006.882169. Google Scholar

[11]

B. Shanker, A. A. Ergin, K. Aygün and E. Michielssen, Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation,, IEEE Trans. Antennas and Propagation, 48 (2000), 1064. doi: 10.1109/8.876325. Google Scholar

[12]

B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics,, CRC Press, (1989). Google Scholar

show all references

References:
[1]

D. Baskin, E. Spence and J. Wunsch, Sharp high-frequency estimates for the Helmholtz equation and applications to boundary integral equations,, SIAM J. Math. Anal., 48 (2016), 229. doi: 10.1137/15M102530X. Google Scholar

[2]

S. N. Chandler-Wilde and P. Monk, Wave-number-explicit bounds in time- harmonic scattering,, SIAM Journal on Mathematical Analysis, 39 (2008), 1428. doi: 10.1137/060662575. Google Scholar

[3]

M. Costabel, Time-dependent Problems with the Boundary Integral Equation Method,, in Encyclopedia of Computational Mechanics (eds. E. Stein, (2004). doi: 10.1002/0470091355.ecm022. Google Scholar

[4]

V. Dominguez and F. Sayas, Some properties of layer potentials and boundary integral operators for the wave equation,, J. Int. Equations Appl., 25 (2013), 253. doi: 10.1216/JIE-2013-25-2-253. Google Scholar

[5]

T. Ha-Duong, B. Ludwig and I. Terrasse, A Galerkin BEM for transient acoustic scattering by an absorbing obstacle,, Internat. J. Numer. Methods Engrg., 57 (2003), 1845. doi: 10.1002/nme.745. Google Scholar

[6]

T. Ha-Duong, On retarded potential boundary integral equations and their discretisation,, in Topics in computational wave propagation, (2003), 301. doi: 10.1007/978-3-642-55483-4_8. Google Scholar

[7]

R. Kress, Minimizing the condition number of boundary integral-operators in acoustic and electromagnetic scattering,, Q. J. Mech. Appl. Math., 38 (1985), 323. doi: 10.1093/qjmam/38.2.323. Google Scholar

[8]

P. D. Lax, C. S. Morawetz and R. S. Phillips, Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle,, Comm. Pure Appl. Math., 16 (1963), 477. doi: 10.1002/cpa.3160160407. Google Scholar

[9]

P. D. Lax and R. S. Phillips, Scattering Theory, vol. 26 of Pure and Applied Mathematics,, 2nd edition, (1989). Google Scholar

[10]

A. Ludwig and Y. Leviatan, Towards a stable two-dimensional time-domain source-model solution by use of a combined source formulation,, IEEE Trans. Antennas Propag., 54 (2006), 3010. doi: 10.1109/TAP.2006.882169. Google Scholar

[11]

B. Shanker, A. A. Ergin, K. Aygün and E. Michielssen, Analysis of transient electromagnetic scattering from closed surfaces using a combined field integral equation,, IEEE Trans. Antennas and Propagation, 48 (2000), 1064. doi: 10.1109/8.876325. Google Scholar

[12]

B. R. Vainberg, Asymptotic Methods in Equations of Mathematical Physics,, CRC Press, (1989). Google Scholar

[1]

Serge Nicaise, Cristina Pignotti, Julie Valein. Exponential stability of the wave equation with boundary time-varying delay. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 693-722. doi: 10.3934/dcdss.2011.4.693

[2]

Yaru Xie, Genqi Xu. Exponential stability of 1-d wave equation with the boundary time delay based on the interior control. Discrete & Continuous Dynamical Systems - S, 2017, 10 (3) : 557-579. doi: 10.3934/dcdss.2017028

[3]

Le Thi Phuong Ngoc, Nguyen Thanh Long. Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2001-2029. doi: 10.3934/cpaa.2013.12.2001

[4]

Jiayun Lin, Kenji Nishihara, Jian Zhai. Critical exponent for the semilinear wave equation with time-dependent damping. Discrete & Continuous Dynamical Systems - A, 2012, 32 (12) : 4307-4320. doi: 10.3934/dcds.2012.32.4307

[5]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[6]

Feng Zhou, Chunyou Sun, Xin Li. Dynamics for the damped wave equations on time-dependent domains. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1645-1674. doi: 10.3934/dcdsb.2018068

[7]

Fengjuan Meng, Meihua Yang, Chengkui Zhong. Attractors for wave equations with nonlinear damping on time-dependent space. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 205-225. doi: 10.3934/dcdsb.2016.21.205

[8]

Montgomery Taylor. The diffusion phenomenon for damped wave equations with space-time dependent coefficients. Discrete & Continuous Dynamical Systems - A, 2018, 38 (11) : 5921-5941. doi: 10.3934/dcds.2018257

[9]

Sergiu Aizicovici, Yimin Ding, N. S. Papageorgiou. Time dependent Volterra integral inclusions in Banach spaces. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 53-63. doi: 10.3934/dcds.1996.2.53

[10]

Takeshi Taniguchi. Exponential boundary stabilization for nonlinear wave equations with localized damping and nonlinear boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1571-1585. doi: 10.3934/cpaa.2017075

[11]

Serge Nicaise, Julie Valein, Emilia Fridman. Stability of the heat and of the wave equations with boundary time-varying delays. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 559-581. doi: 10.3934/dcdss.2009.2.559

[12]

Beatrice Bugert, Gunther Schmidt. Analytical investigation of an integral equation method for electromagnetic scattering by biperiodic structures. Discrete & Continuous Dynamical Systems - S, 2015, 8 (3) : 435-473. doi: 10.3934/dcdss.2015.8.435

[13]

Yaru Xie, Genqi Xu. The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks & Heterogeneous Media, 2016, 11 (3) : 527-543. doi: 10.3934/nhm.2016008

[14]

Nguyen Thanh Long, Hoang Hai Ha, Le Thi Phuong Ngoc, Nguyen Anh Triet. Existence, blow-up and exponential decay estimates for a system of nonlinear viscoelastic wave equations with nonlinear boundary conditions. Communications on Pure & Applied Analysis, 2020, 19 (1) : 455-492. doi: 10.3934/cpaa.2020023

[15]

Guanghui Hu, Yavar Kian. Determination of singular time-dependent coefficients for wave equations from full and partial data. Inverse Problems & Imaging, 2018, 12 (3) : 745-772. doi: 10.3934/ipi.2018032

[16]

Moez Daoulatli. Rates of decay for the wave systems with time dependent damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 407-443. doi: 10.3934/dcds.2011.31.407

[17]

Alexander Zlotnik, Ilya Zlotnik. Finite element method with discrete transparent boundary conditions for the time-dependent 1D Schrödinger equation. Kinetic & Related Models, 2012, 5 (3) : 639-667. doi: 10.3934/krm.2012.5.639

[18]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[19]

Stéphane Gerbi, Belkacem Said-Houari. Exponential decay for solutions to semilinear damped wave equation. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 559-566. doi: 10.3934/dcdss.2012.5.559

[20]

Kimitoshi Tsutaya. Scattering theory for the wave equation of a Hartree type in three space dimensions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2261-2281. doi: 10.3934/dcds.2014.34.2261

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (4)

[Back to Top]