July  2016, 36(7): 4015-4025. doi: 10.3934/dcds.2016.36.4015

Planar quasi-homogeneous polynomial systems with a given weight degree

1. 

School of Mathematics and Statistics, Nanjing University of Information Science & Technology, Nanjing 210044, China

2. 

Department of Mathematics, Shanghai Normal University, Shanghai 200234

Received  January 2015 Revised  January 2016 Published  March 2016

In this paper, we investigate a class of quasi-homogeneous polynomial systems with a given weight degree. Firstly, by some analytical skills, several properties about this kind of systems are derived and an algorithm can be established to obtain all possible explicit systems for a given weight degree. Then, we focus on center problems for such systems and provide some necessary conditions for the existence of centers. Finally, for a specific quasi-homogeneous polynomial system, we characterize its center and prove that the center is not isochronous.
Citation: Yanqin Xiong, Maoan Han. Planar quasi-homogeneous polynomial systems with a given weight degree. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4015-4025. doi: 10.3934/dcds.2016.36.4015
References:
[1]

W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Advances in Mathematics, 254 (2014), 233. doi: 10.1016/j.aim.2013.12.006. Google Scholar

[2]

A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic systems in the plane,, J. Math. Anal. Appl., 147 (1990), 420. doi: 10.1016/0022-247X(90)90359-N. Google Scholar

[3]

T. Date and M. Lai, Canonical forms of real homogeneous quadratic transformations,, J. Math. Anal. Appl., 56 (1976), 650. doi: 10.1016/0022-247X(76)90031-7. Google Scholar

[4]

T. Date, Classification and analysis of two-dimensional homogeneous quadratic differential equations systems,, J. Differential Equations, 32 (1979), 311. doi: 10.1016/0022-0396(79)90037-8. Google Scholar

[5]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theorey of Planar Polynomial Systems,, Springer, (2006). Google Scholar

[6]

B. García, J. Llibre and J. S. Pérea del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Differential Equations, 255 (2013), 3185. doi: 10.1016/j.jde.2013.07.032. Google Scholar

[7]

L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Differential Equations, 246 (2009), 3126. doi: 10.1016/j.jde.2009.02.010. Google Scholar

[8]

J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531. doi: 10.3934/dcds.2013.33.4531. Google Scholar

[9]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269. doi: 10.1088/0951-7715/15/4/313. Google Scholar

[10]

J. Llibre and C. Pessoa, On the centers of the weight-homogeneous polynomial vector fields on the plane,, J. Math. Anal. Appl., 359 (2009), 722. doi: 10.1016/j.jmaa.2009.06.036. Google Scholar

[11]

W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homogeneous centers,, J. Dyn. Diff. Equat., 21 (2009), 133. doi: 10.1007/s10884-008-9126-1. Google Scholar

[12]

H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dynamics, 78 (2014), 1659. doi: 10.1007/s11071-014-1541-8. Google Scholar

[13]

P. Mardešić, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Differential Equations, 121 (1995), 67. doi: 10.1006/jdeq.1995.1122. Google Scholar

[14]

Y. Zhao, Limit cycles for planar semi-quasi-homogeneous polynomial vector fields,, J. Math. Anal. Appl., 397 (2013), 276. doi: 10.1016/j.jmaa.2012.07.060. Google Scholar

show all references

References:
[1]

W. Aziz, J. Llibre and C. Pantazi, Centers of quasi-homogeneous polynomial differential equations of degree three,, Advances in Mathematics, 254 (2014), 233. doi: 10.1016/j.aim.2013.12.006. Google Scholar

[2]

A. Cima and J. Llibre, Algebraic and topological classification of the homogeneous cubic systems in the plane,, J. Math. Anal. Appl., 147 (1990), 420. doi: 10.1016/0022-247X(90)90359-N. Google Scholar

[3]

T. Date and M. Lai, Canonical forms of real homogeneous quadratic transformations,, J. Math. Anal. Appl., 56 (1976), 650. doi: 10.1016/0022-247X(76)90031-7. Google Scholar

[4]

T. Date, Classification and analysis of two-dimensional homogeneous quadratic differential equations systems,, J. Differential Equations, 32 (1979), 311. doi: 10.1016/0022-0396(79)90037-8. Google Scholar

[5]

F. Dumortier, J. Llibre and J. C. Artés, Qualitative Theorey of Planar Polynomial Systems,, Springer, (2006). Google Scholar

[6]

B. García, J. Llibre and J. S. Pérea del Río, Planar quasi-homogeneous polynomial differential systems and their integrability,, J. Differential Equations, 255 (2013), 3185. doi: 10.1016/j.jde.2013.07.032. Google Scholar

[7]

L. Gavrilov, J. Giné and M. Grau, On the cyclicity of weight-homogeneous centers,, J. Differential Equations, 246 (2009), 3126. doi: 10.1016/j.jde.2009.02.010. Google Scholar

[8]

J. Giné, M. Grau and J. Llibre, Polynomial and rational first integrals for planar quasi-homogeneous polynomial differential systems,, Discrete Contin. Dyn. Syst., 33 (2013), 4531. doi: 10.3934/dcds.2013.33.4531. Google Scholar

[9]

J. Llibre and X. Zhang, Polynomial first integrals for quasi-homogeneous polynomial differential systems,, Nonlinearity, 15 (2002), 1269. doi: 10.1088/0951-7715/15/4/313. Google Scholar

[10]

J. Llibre and C. Pessoa, On the centers of the weight-homogeneous polynomial vector fields on the plane,, J. Math. Anal. Appl., 359 (2009), 722. doi: 10.1016/j.jmaa.2009.06.036. Google Scholar

[11]

W. Li, J. Llibre, J. Yang and Z. Zhang, Limit cycles bifurcating from the period annulus of quasi-homogeneous centers,, J. Dyn. Diff. Equat., 21 (2009), 133. doi: 10.1007/s10884-008-9126-1. Google Scholar

[12]

H. Liang, J. Huang and Y. Zhao, Classification of global phase portraits of planar quartic quasi-homogeneous polynomial differential systems,, Nonlinear Dynamics, 78 (2014), 1659. doi: 10.1007/s11071-014-1541-8. Google Scholar

[13]

P. Mardešić, C. Rousseau and B. Toni, Linearization of isochronous centers,, J. Differential Equations, 121 (1995), 67. doi: 10.1006/jdeq.1995.1122. Google Scholar

[14]

Y. Zhao, Limit cycles for planar semi-quasi-homogeneous polynomial vector fields,, J. Math. Anal. Appl., 397 (2013), 276. doi: 10.1016/j.jmaa.2012.07.060. Google Scholar

[1]

Yilei Tang, Long Wang, Xiang Zhang. Center of planar quintic quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2177-2191. doi: 10.3934/dcds.2015.35.2177

[2]

Antonio Algaba, Estanislao Gamero, Cristóbal García. The reversibility problem for quasi-homogeneous dynamical systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3225-3236. doi: 10.3934/dcds.2013.33.3225

[3]

Jackson Itikawa, Jaume Llibre. Global phase portraits of uniform isochronous centers with quartic homogeneous polynomial nonlinearities. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 121-131. doi: 10.3934/dcdsb.2016.21.121

[4]

Yilei Tang. Global dynamics and bifurcation of planar piecewise smooth quadratic quasi-homogeneous differential systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 2029-2046. doi: 10.3934/dcds.2018082

[5]

Hebai Chen, Jaume Llibre, Yilei Tang. Centers of discontinuous piecewise smooth quasi–homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-15. doi: 10.3934/dcdsb.2019150

[6]

Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531

[7]

B. Coll, A. Gasull, R. Prohens. Center-focus and isochronous center problems for discontinuous differential equations. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 609-624. doi: 10.3934/dcds.2000.6.609

[8]

Jaume Llibre, Claudia Valls. Centers for polynomial vector fields of arbitrary degree. Communications on Pure & Applied Analysis, 2009, 8 (2) : 725-742. doi: 10.3934/cpaa.2009.8.725

[9]

Heide Gluesing-Luerssen. Partitions of Frobenius rings induced by the homogeneous weight. Advances in Mathematics of Communications, 2014, 8 (2) : 191-207. doi: 10.3934/amc.2014.8.191

[10]

Jaume Giné. Center conditions for generalized polynomial kukles systems. Communications on Pure & Applied Analysis, 2017, 16 (2) : 417-426. doi: 10.3934/cpaa.2017021

[11]

Isaac A. García, Douglas S. Shafer. Cyclicity of a class of polynomial nilpotent center singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2497-2520. doi: 10.3934/dcds.2016.36.2497

[12]

Nigel Boston, Jing Hao. The weight distribution of quasi-quadratic residue codes. Advances in Mathematics of Communications, 2018, 12 (2) : 363-385. doi: 10.3934/amc.2018023

[13]

Claudia Valls. The Boussinesq system:dynamics on the center manifold. Communications on Pure & Applied Analysis, 2005, 4 (4) : 839-860. doi: 10.3934/cpaa.2005.4.839

[14]

Jaume Llibre, Roland Rabanal. Center conditions for a class of planar rigid polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1075-1090. doi: 10.3934/dcds.2015.35.1075

[15]

Jaume Llibre, Yilei Tang. Limit cycles of discontinuous piecewise quadratic and cubic polynomial perturbations of a linear center. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1769-1784. doi: 10.3934/dcdsb.2018236

[16]

Lingling Liu, Bo Gao, Dongmei Xiao, Weinian Zhang. Identification of focus and center in a 3-dimensional system. Discrete & Continuous Dynamical Systems - B, 2014, 19 (2) : 485-522. doi: 10.3934/dcdsb.2014.19.485

[17]

Ricardo M. Martins, Otávio M. L. Gomide. Limit cycles for quadratic and cubic planar differential equations under polynomial perturbations of small degree. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3353-3386. doi: 10.3934/dcds.2017142

[18]

Jaume Llibre, Y. Paulina Martínez, Claudio Vidal. Linear type centers of polynomial Hamiltonian systems with nonlinearities of degree 4 symmetric with respect to the y-axis. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 887-912. doi: 10.3934/dcdsb.2018047

[19]

Carla Mascia, Giancarlo Rinaldo, Massimiliano Sala. Hilbert quasi-polynomial for order domains and application to coding theory. Advances in Mathematics of Communications, 2018, 12 (2) : 287-301. doi: 10.3934/amc.2018018

[20]

E. Norman Dancer. On a degree associated with the Gross-Pitaevskii system with a large parameter. Discrete & Continuous Dynamical Systems - S, 2019, 12 (7) : 1835-1839. doi: 10.3934/dcdss.2019120

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]