July  2016, 36(7): 3483-3510. doi: 10.3934/dcds.2016.36.3483

Existence of solitary-wave solutions to nonlocal equations

1. 

Department of Mathematical Sciences, Norwegian University of Science and Technology, 7491 Trondheim, Norway

Received  March 2015 Revised  November 2015 Published  March 2016

We prove existence and conditional energetic stability of solitary-wave solutions for the two classes of pseudodifferential equations \begin{equation*} u_t+\left(f(u)\right)_x-\left(L u\right)_x=0 \end{equation*} and \begin{equation*} u_t+\left(f(u)\right)_x+\left(L u\right)_t=0, \end{equation*} where $f$ is a nonlinear term, typically of the form $c|u|^p$ or $cu|u|^{p-1}$, and $L$ is a Fourier multiplier operator of positive order. The former class includes for instance the Whitham equation with capillary effects and the generalized Korteweg-de Vries equation, and the latter the Benjamin-Bona-Mahony equation. Existence and conditional energetic stability results have earlier been established using the method of concentration-compactness for a class of operators with symbol of order $s\geq 1$. We extend these results to symbols of order $0 < s < 1$, thereby improving upon the results for general operators with symbol of order $s\geq 1$ by enlarging both the class of linear operators and nonlinearities admitting existence of solitary waves. Instead of using abstract operator theory, the new results are obtained by direct calculations involving the nonlocal operator $L$, something that gives us the bounds and estimates needed for the method of concentration-compactness.
Citation: Mathias Nikolai Arnesen. Existence of solitary-wave solutions to nonlocal equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3483-3510. doi: 10.3934/dcds.2016.36.3483
References:
[1]

J. P. Albert, Concentration compactness and the stability of solitary-wave solutions to nonlocal equations,, Contemp. Math., 221 (1999), 1. doi: 10.1090/conm/221/03116. Google Scholar

[2]

J. P. Albert, J. L. Bona and D. B. Henry, Sufficient conditions for stability of solitary-wave solutions of model equations for long waves,, Phys. D, 24 (1987), 343. doi: 10.1016/0167-2789(87)90084-4. Google Scholar

[3]

J. P. Albert, J. L. Bona and J.-C. Saut, Model equations for waves in stratified fluids,, Proc. R. Soc. Lond., 453 (1997), 1233. doi: 10.1098/rspa.1997.0068. Google Scholar

[4]

J. Angulo Pava, Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions,, American Mathematical Society, (2009). doi: 10.1090/surv/156. Google Scholar

[5]

H. Chen and J. L. Bona, Existence and asymptotic properties of solitary-wave solutions of Benjamin-type equations,, Adv. Differential Equations, 3 (1998), 51. Google Scholar

[6]

R. R. Coifman and Y. Meyer, Au-delà des Opérateurs Pseudo-différentiels,, Astérisque, (1978). Google Scholar

[7]

M. Ehrnström, J. Escher and L. Pei, A note on the local well-posedness for the Whitham equation,, Elliptic and Parabolic Equations, 119 (2015), 63. doi: 10.1007/978-3-319-12547-3_3. Google Scholar

[8]

M. Ehrnström, M. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type,, Nonlinearity, 25 (2012), 2903. doi: 10.1088/0951-7715/25/10/2903. Google Scholar

[9]

M. Ehrnström and H. Kalisch, Global bifurcation for the Whitham equation,, Math. Model. Nat. Phenom., 8 (2013), 13. doi: 10.1051/mmnp/20138502. Google Scholar

[10]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbbR$,, Acta Math., 210 (2013), 261. doi: 10.1007/s11511-013-0095-9. Google Scholar

[11]

B. Guo and D. Huang, Existence and stability of standing waves for nonlinear fractional Schrödinger equations,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4746806. Google Scholar

[12]

V. M. Hur and M. A. Johnson, Modulational instability in the Whitham equation for water waves,, Studies in Applied Mathematics, 134 (2015), 120. doi: 10.1111/sapm.12061. Google Scholar

[13]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation,, Physica D, 295/296 (2015), 46. doi: 10.1016/j.physd.2014.12.004. Google Scholar

[14]

D. Lannes and J.-C. Saut, Remarks on the full dispersion Kadomtsev-Petviashvli equations,, Kinet. Relat. Models, 6 (2013), 989. doi: 10.3934/krm.2013.6.989. Google Scholar

[15]

F. Linares, D. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory,, SIAM J. Math. Anal., 46 (2014), 1505. doi: 10.1137/130912001. Google Scholar

[16]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1,, Ann. Inst. Henri Poincaré Anal. Non Linéare, 1 (1984), 109. Google Scholar

[17]

M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation,, Commun. in Partial Differential Equations, 12 (1987), 1133. doi: 10.1080/03605308708820522. Google Scholar

[18]

E. Zeidler, Applied Functional Analysis: Main Principles and their Applications,, Springer-Verlag, (1995). Google Scholar

[19]

L. Zeng, Existence and stability of solitary-wave solutions of equations of Benjamin-Bona-Mahony type,, J. Diff. Eqns., 188 (2003), 1. doi: 10.1016/S0022-0396(02)00061-X. Google Scholar

show all references

References:
[1]

J. P. Albert, Concentration compactness and the stability of solitary-wave solutions to nonlocal equations,, Contemp. Math., 221 (1999), 1. doi: 10.1090/conm/221/03116. Google Scholar

[2]

J. P. Albert, J. L. Bona and D. B. Henry, Sufficient conditions for stability of solitary-wave solutions of model equations for long waves,, Phys. D, 24 (1987), 343. doi: 10.1016/0167-2789(87)90084-4. Google Scholar

[3]

J. P. Albert, J. L. Bona and J.-C. Saut, Model equations for waves in stratified fluids,, Proc. R. Soc. Lond., 453 (1997), 1233. doi: 10.1098/rspa.1997.0068. Google Scholar

[4]

J. Angulo Pava, Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions,, American Mathematical Society, (2009). doi: 10.1090/surv/156. Google Scholar

[5]

H. Chen and J. L. Bona, Existence and asymptotic properties of solitary-wave solutions of Benjamin-type equations,, Adv. Differential Equations, 3 (1998), 51. Google Scholar

[6]

R. R. Coifman and Y. Meyer, Au-delà des Opérateurs Pseudo-différentiels,, Astérisque, (1978). Google Scholar

[7]

M. Ehrnström, J. Escher and L. Pei, A note on the local well-posedness for the Whitham equation,, Elliptic and Parabolic Equations, 119 (2015), 63. doi: 10.1007/978-3-319-12547-3_3. Google Scholar

[8]

M. Ehrnström, M. D. Groves and E. Wahlén, On the existence and stability of solitary-wave solutions to a class of evolution equations of Whitham type,, Nonlinearity, 25 (2012), 2903. doi: 10.1088/0951-7715/25/10/2903. Google Scholar

[9]

M. Ehrnström and H. Kalisch, Global bifurcation for the Whitham equation,, Math. Model. Nat. Phenom., 8 (2013), 13. doi: 10.1051/mmnp/20138502. Google Scholar

[10]

R. L. Frank and E. Lenzmann, Uniqueness of non-linear ground states for fractional Laplacians in $\mathbbR$,, Acta Math., 210 (2013), 261. doi: 10.1007/s11511-013-0095-9. Google Scholar

[11]

B. Guo and D. Huang, Existence and stability of standing waves for nonlinear fractional Schrödinger equations,, J. Math. Phys., 53 (2012). doi: 10.1063/1.4746806. Google Scholar

[12]

V. M. Hur and M. A. Johnson, Modulational instability in the Whitham equation for water waves,, Studies in Applied Mathematics, 134 (2015), 120. doi: 10.1111/sapm.12061. Google Scholar

[13]

C. Klein and J.-C. Saut, A numerical approach to blow-up issues for dispersive perturbations of Burgers' equation,, Physica D, 295/296 (2015), 46. doi: 10.1016/j.physd.2014.12.004. Google Scholar

[14]

D. Lannes and J.-C. Saut, Remarks on the full dispersion Kadomtsev-Petviashvli equations,, Kinet. Relat. Models, 6 (2013), 989. doi: 10.3934/krm.2013.6.989. Google Scholar

[15]

F. Linares, D. Pilod and J.-C. Saut, Dispersive perturbations of Burgers and hyperbolic equations I: Local theory,, SIAM J. Math. Anal., 46 (2014), 1505. doi: 10.1137/130912001. Google Scholar

[16]

P.-L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case, part 1,, Ann. Inst. Henri Poincaré Anal. Non Linéare, 1 (1984), 109. Google Scholar

[17]

M. I. Weinstein, Existence and dynamic stability of solitary wave solutions of equations arising in long wave propagation,, Commun. in Partial Differential Equations, 12 (1987), 1133. doi: 10.1080/03605308708820522. Google Scholar

[18]

E. Zeidler, Applied Functional Analysis: Main Principles and their Applications,, Springer-Verlag, (1995). Google Scholar

[19]

L. Zeng, Existence and stability of solitary-wave solutions of equations of Benjamin-Bona-Mahony type,, J. Diff. Eqns., 188 (2003), 1. doi: 10.1016/S0022-0396(02)00061-X. Google Scholar

[1]

Kristoffer Varholm. Solitary gravity-capillary water waves with point vortices. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3927-3959. doi: 10.3934/dcds.2016.36.3927

[2]

Daniele Cassani, João Marcos do Ó, Abbas Moameni. Existence and concentration of solitary waves for a class of quasilinear Schrödinger equations. Communications on Pure & Applied Analysis, 2010, 9 (2) : 281-306. doi: 10.3934/cpaa.2010.9.281

[3]

Yuanhong Wei, Yong Li, Xue Yang. On concentration of semi-classical solitary waves for a generalized Kadomtsev-Petviashvili equation. Discrete & Continuous Dynamical Systems - S, 2017, 10 (5) : 1095-1106. doi: 10.3934/dcdss.2017059

[4]

D. Bartolucci, L. Orsina. Uniformly elliptic Liouville type equations: concentration compactness and a priori estimates. Communications on Pure & Applied Analysis, 2005, 4 (3) : 499-522. doi: 10.3934/cpaa.2005.4.499

[5]

José Raúl Quintero, Juan Carlos Muñoz Grajales. Solitary waves for an internal wave model. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5721-5741. doi: 10.3934/dcds.2016051

[6]

Jerry Bona, Hongqiu Chen. Solitary waves in nonlinear dispersive systems. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 313-378. doi: 10.3934/dcdsb.2002.2.313

[7]

Orlando Lopes. A linearized instability result for solitary waves. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 115-119. doi: 10.3934/dcds.2002.8.115

[8]

Mark Jones. The bifurcation of interfacial capillary-gravity waves under O(2) symmetry. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1183-1204. doi: 10.3934/cpaa.2011.10.1183

[9]

Frédéric Rousset, Nikolay Tzvetkov. On the transverse instability of one dimensional capillary-gravity waves. Discrete & Continuous Dynamical Systems - B, 2010, 13 (4) : 859-872. doi: 10.3934/dcdsb.2010.13.859

[10]

Shu-Ming Sun. Existence theory of capillary-gravity waves on water of finite depth. Mathematical Control & Related Fields, 2014, 4 (3) : 315-363. doi: 10.3934/mcrf.2014.4.315

[11]

Emmanuel Hebey. Solitary waves in critical Abelian gauge theories. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1747-1761. doi: 10.3934/dcds.2012.32.1747

[12]

Yiren Chen, Zhengrong Liu. The bifurcations of solitary and kink waves described by the Gardner equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1629-1645. doi: 10.3934/dcdss.2016067

[13]

H. Kalisch. Stability of solitary waves for a nonlinearly dispersive equation. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 709-717. doi: 10.3934/dcds.2004.10.709

[14]

John Boyd. Strongly nonlinear perturbation theory for solitary waves and bions. Evolution Equations & Control Theory, 2019, 8 (1) : 1-29. doi: 10.3934/eect.2019001

[15]

Juan Belmonte-Beitia, Vladyslav Prytula. Existence of solitary waves in nonlinear equations of Schrödinger type. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1007-1017. doi: 10.3934/dcdss.2011.4.1007

[16]

Hung-Chu Hsu. Recovering surface profiles of solitary waves on a uniform stream from pressure measurements. Discrete & Continuous Dynamical Systems - A, 2014, 34 (8) : 3035-3043. doi: 10.3934/dcds.2014.34.3035

[17]

Philippe Gravejat. Asymptotics of the solitary waves for the generalized Kadomtsev-Petviashvili equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 835-882. doi: 10.3934/dcds.2008.21.835

[18]

David Usero. Dark solitary waves in nonlocal nonlinear Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2011, 4 (5) : 1327-1340. doi: 10.3934/dcdss.2011.4.1327

[19]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[20]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]