• Previous Article
    From the highly compressible Navier-Stokes equations to the porous medium equation -- rate of convergence
  • DCDS Home
  • This Issue
  • Next Article
    Bubbling on boundary submanifolds for a semilinear Neumann problem near high critical exponents
June  2016, 36(6): 3077-3106. doi: 10.3934/dcds.2016.36.3077

Global existence and optimal decay rates of solutions for compressible Hall-MHD equations

1. 

School of Mathematics and Computational Science, Sun Yat-sen University, Guangzhou 510275, China, China

Received  April 2015 Revised  October 2015 Published  December 2015

In this paper, we are concerned with global existence and optimal decay rates of solutions for the compressible Hall-MHD equations in dimension three. First, we prove the global existence of strong solutions by the standard energy method under the condition that the initial data are close to the constant equilibrium state in $H^2$-framework. Second, optimal decay rates of strong solutions in $L^2$-norm are obtained if the initial data belong to $L^1$ additionally. Finally, we apply Fourier splitting method by Schonbek [Arch. Rational Mech. Anal. 88 (1985)] to establish optimal decay rates for higher order spatial derivatives of classical solutions in $H^3$-framework, which improves the work of Fan et al.[Nonlinear Anal. Real World Appl. 22 (2015)].
Citation: Jincheng Gao, Zheng-An Yao. Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 3077-3106. doi: 10.3934/dcds.2016.36.3077
References:
[1]

M. Acheritogaray, P. Degond, A. Frouvelle and J. G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system,, Kinet. Relat. Models, 4 (2011), 901. doi: 10.3934/krm.2011.4.901. Google Scholar

[2]

S. A. Balbus and C. Terquem, Linear analysis of the Hall effect in protostellar disks,, Astrophys. J., 552 (2001), 235. doi: 10.1086/320452. Google Scholar

[3]

M. J. Benvenutti and L. C. F. Ferreira, Existence and stability of global large strong solutions for the Hall-MHD system,, preprint, (). Google Scholar

[4]

D. Chae, P. Degond and J. G. Liu, Well-posedness for Hall-magnetohydrodynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 555. doi: 10.1016/j.anihpc.2013.04.006. Google Scholar

[5]

D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics,, J. Differential Equations, 256 (2014), 3835. doi: 10.1016/j.jde.2014.03.003. Google Scholar

[6]

D. Chae and M. E. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations,, J. Differential Equations, 255 (2013), 3971. doi: 10.1016/j.jde.2013.07.059. Google Scholar

[7]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations,, Nonlinear Anal., 72 (2010), 4438. doi: 10.1016/j.na.2010.02.019. Google Scholar

[8]

R. J. Duan, H. X. Liu, S. J. Ukai and T. Yang, Optimal $L^p-L^q$ convergence rates for the compressible Navier-Stokes equations with potential force,, J. Differential Equations, 238 (2007), 220. doi: 10.1016/j.jde.2007.03.008. Google Scholar

[9]

J. S. Fan, A. Alsaedi, T. Hayat, G. Nakamura and Y. Zhou, On strong solutions to the compressible Hall-magnetohydrodynamic system,, Nonlinear Anal. Real World Appl., 22 (2015), 423. doi: 10.1016/j.nonrwa.2014.10.003. Google Scholar

[10]

J. S. Fan, F. C. Li and G. Nakamura, Regularity criteria for the incompressible Hall-magnetohydrodynamic equations,, Nonlinear Anal., 109 (2014), 173. doi: 10.1016/j.na.2014.07.003. Google Scholar

[11]

J. S. Fan and T. Ozawa, Regularity criteria for the density-dependent Hall-magnetohydrodynamics,, Appl. Math. Lett., 36 (2014), 14. doi: 10.1016/j.aml.2014.04.010. Google Scholar

[12]

J. S. Fan, S. X. Huang and G. Nakamura, Well-posedness for the axisymmetric incompressible viscous Hall-magnetohydrodynamic equations,, Appl. Math. Lett., 26 (2013), 963. doi: 10.1016/j.aml.2013.04.008. Google Scholar

[13]

T. G. Forbes, Magnetic reconnection in solar flares,, Geophys. Astrophys. Fluid Dyn., 62 (1991), 15. doi: 10.1080/03091929108229123. Google Scholar

[14]

J. C. Gao, Q. Tao and Z. A. Yao, Long-time behavior of solution for the compressible nematic liquid crystal flows in $\mathbbR^3$,, preprint, (). Google Scholar

[15]

J. C. Gao, Y. H. Chen and Z. A. Yao, Long-time behavior of solution to the compressible magnetohydrodynamic equations,, Nonlinear Anal., 128 (2015), 122. doi: 10.1016/j.na.2015.07.028. Google Scholar

[16]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, Comm. Partial Differential Equations, 37 (2012), 2165. doi: 10.1080/03605302.2012.696296. Google Scholar

[17]

H. Homann and R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems,, Phys. D, 208 (2005), 59. doi: 10.1016/j.physd.2005.06.003. Google Scholar

[18]

X. P. Hu and G. C. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows,, SIAM J. Math. Anal., 45 (2013), 2815. doi: 10.1137/120892350. Google Scholar

[19]

F. C. Li and H. J. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109. doi: 10.1017/S0308210509001632. Google Scholar

[20]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67. Google Scholar

[21]

P. D. Mininni, D. O. Gòmez and S. M. Mahajan, Dynamo action in magnetohydrodynamics and Hall magnetohydrodynamics,, Astrophys. J., 587 (2003), 472. doi: 10.1086/368181. Google Scholar

[22]

L. Nirenberg, On elliptic partial differential euations,, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115. Google Scholar

[23]

M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 88 (1985), 209. doi: 10.1007/BF00752111. Google Scholar

[24]

D. A. Shalybkov and V. A. Urpin, The Hall effect and the decay of magnetic fields,, Astron. Astrophys., (1997), 685. Google Scholar

[25]

Z. Tan and H. Q. Wang, Optimal decay rates of the compressible magnetohydrodynamic equations,, Nonlinear Anal. Real World Appl., 14 (2013), 188. doi: 10.1016/j.nonrwa.2012.05.012. Google Scholar

[26]

Y. J. Wang and Z. Tan, Global existence and optimal decay rate for the strong solutions in $H^2$ to the compressible Navier-Stokes equations,, Appl. Math. Lett., 24 (2011), 1778. doi: 10.1016/j.aml.2011.04.028. Google Scholar

[27]

W. J. Wang and W. K. Wang, Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces,, Discrete Contin. Dyn. Syst., 35 (2015), 513. doi: 10.3934/dcds.2015.35.513. Google Scholar

[28]

W. J. Wang, Large time behavior of solutions to the compressible Navier-Stokes equations with potential force,, J. Math. Anal. Appl., 423 (2015), 1448. doi: 10.1016/j.jmaa.2014.10.050. Google Scholar

[29]

M. Wardle, Star formation and the Hall effect,, Astrophys. Space Sci., 292 (2004), 317. Google Scholar

[30]

S. K. Weng, On analyticity and temporal decay rates of solutions to the viscous resistive Hall-MHD system,, preprint, (). Google Scholar

show all references

References:
[1]

M. Acheritogaray, P. Degond, A. Frouvelle and J. G. Liu, Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system,, Kinet. Relat. Models, 4 (2011), 901. doi: 10.3934/krm.2011.4.901. Google Scholar

[2]

S. A. Balbus and C. Terquem, Linear analysis of the Hall effect in protostellar disks,, Astrophys. J., 552 (2001), 235. doi: 10.1086/320452. Google Scholar

[3]

M. J. Benvenutti and L. C. F. Ferreira, Existence and stability of global large strong solutions for the Hall-MHD system,, preprint, (). Google Scholar

[4]

D. Chae, P. Degond and J. G. Liu, Well-posedness for Hall-magnetohydrodynamics,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 555. doi: 10.1016/j.anihpc.2013.04.006. Google Scholar

[5]

D. Chae and J. Lee, On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics,, J. Differential Equations, 256 (2014), 3835. doi: 10.1016/j.jde.2014.03.003. Google Scholar

[6]

D. Chae and M. E. Schonbek, On the temporal decay for the Hall-magnetohydrodynamic equations,, J. Differential Equations, 255 (2013), 3971. doi: 10.1016/j.jde.2013.07.059. Google Scholar

[7]

Q. Chen and Z. Tan, Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations,, Nonlinear Anal., 72 (2010), 4438. doi: 10.1016/j.na.2010.02.019. Google Scholar

[8]

R. J. Duan, H. X. Liu, S. J. Ukai and T. Yang, Optimal $L^p-L^q$ convergence rates for the compressible Navier-Stokes equations with potential force,, J. Differential Equations, 238 (2007), 220. doi: 10.1016/j.jde.2007.03.008. Google Scholar

[9]

J. S. Fan, A. Alsaedi, T. Hayat, G. Nakamura and Y. Zhou, On strong solutions to the compressible Hall-magnetohydrodynamic system,, Nonlinear Anal. Real World Appl., 22 (2015), 423. doi: 10.1016/j.nonrwa.2014.10.003. Google Scholar

[10]

J. S. Fan, F. C. Li and G. Nakamura, Regularity criteria for the incompressible Hall-magnetohydrodynamic equations,, Nonlinear Anal., 109 (2014), 173. doi: 10.1016/j.na.2014.07.003. Google Scholar

[11]

J. S. Fan and T. Ozawa, Regularity criteria for the density-dependent Hall-magnetohydrodynamics,, Appl. Math. Lett., 36 (2014), 14. doi: 10.1016/j.aml.2014.04.010. Google Scholar

[12]

J. S. Fan, S. X. Huang and G. Nakamura, Well-posedness for the axisymmetric incompressible viscous Hall-magnetohydrodynamic equations,, Appl. Math. Lett., 26 (2013), 963. doi: 10.1016/j.aml.2013.04.008. Google Scholar

[13]

T. G. Forbes, Magnetic reconnection in solar flares,, Geophys. Astrophys. Fluid Dyn., 62 (1991), 15. doi: 10.1080/03091929108229123. Google Scholar

[14]

J. C. Gao, Q. Tao and Z. A. Yao, Long-time behavior of solution for the compressible nematic liquid crystal flows in $\mathbbR^3$,, preprint, (). Google Scholar

[15]

J. C. Gao, Y. H. Chen and Z. A. Yao, Long-time behavior of solution to the compressible magnetohydrodynamic equations,, Nonlinear Anal., 128 (2015), 122. doi: 10.1016/j.na.2015.07.028. Google Scholar

[16]

Y. Guo and Y. J. Wang, Decay of dissipative equations and negative Sobolev spaces,, Comm. Partial Differential Equations, 37 (2012), 2165. doi: 10.1080/03605302.2012.696296. Google Scholar

[17]

H. Homann and R. Grauer, Bifurcation analysis of magnetic reconnection in Hall-MHD systems,, Phys. D, 208 (2005), 59. doi: 10.1016/j.physd.2005.06.003. Google Scholar

[18]

X. P. Hu and G. C. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows,, SIAM J. Math. Anal., 45 (2013), 2815. doi: 10.1137/120892350. Google Scholar

[19]

F. C. Li and H. J. Yu, Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 141 (2011), 109. doi: 10.1017/S0308210509001632. Google Scholar

[20]

A. Matsumura and T. Nishida, The initial value problems for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67. Google Scholar

[21]

P. D. Mininni, D. O. Gòmez and S. M. Mahajan, Dynamo action in magnetohydrodynamics and Hall magnetohydrodynamics,, Astrophys. J., 587 (2003), 472. doi: 10.1086/368181. Google Scholar

[22]

L. Nirenberg, On elliptic partial differential euations,, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 115. Google Scholar

[23]

M. E. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 88 (1985), 209. doi: 10.1007/BF00752111. Google Scholar

[24]

D. A. Shalybkov and V. A. Urpin, The Hall effect and the decay of magnetic fields,, Astron. Astrophys., (1997), 685. Google Scholar

[25]

Z. Tan and H. Q. Wang, Optimal decay rates of the compressible magnetohydrodynamic equations,, Nonlinear Anal. Real World Appl., 14 (2013), 188. doi: 10.1016/j.nonrwa.2012.05.012. Google Scholar

[26]

Y. J. Wang and Z. Tan, Global existence and optimal decay rate for the strong solutions in $H^2$ to the compressible Navier-Stokes equations,, Appl. Math. Lett., 24 (2011), 1778. doi: 10.1016/j.aml.2011.04.028. Google Scholar

[27]

W. J. Wang and W. K. Wang, Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces,, Discrete Contin. Dyn. Syst., 35 (2015), 513. doi: 10.3934/dcds.2015.35.513. Google Scholar

[28]

W. J. Wang, Large time behavior of solutions to the compressible Navier-Stokes equations with potential force,, J. Math. Anal. Appl., 423 (2015), 1448. doi: 10.1016/j.jmaa.2014.10.050. Google Scholar

[29]

M. Wardle, Star formation and the Hall effect,, Astrophys. Space Sci., 292 (2004), 317. Google Scholar

[30]

S. K. Weng, On analyticity and temporal decay rates of solutions to the viscous resistive Hall-MHD system,, preprint, (). Google Scholar

[1]

Jishan Fan, Fucai Li, Gen Nakamura. Low Mach number limit of the full compressible Hall-MHD system. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1731-1740. doi: 10.3934/cpaa.2017084

[2]

Zhong Tan, Huaqiao Wang, Yucong Wang. Time-splitting methods to solve the Hall-MHD systems with Lévy noises. Kinetic & Related Models, 2019, 12 (1) : 243-267. doi: 10.3934/krm.2019011

[3]

Ning Duan, Yasuhide Fukumoto, Xiaopeng Zhao. Asymptotic behavior of solutions to incompressible electron inertial Hall-MHD system in $ \mathbb{R}^3 $. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3035-3057. doi: 10.3934/cpaa.2019136

[4]

Haibo Cui, Lei Yao, Zheng-An Yao. Global existence and optimal decay rates of solutions to a reduced gravity two and a half layer model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 981-1000. doi: 10.3934/cpaa.2015.14.981

[5]

Wenjun Wang, Weike Wang. Decay rates of the compressible Navier-Stokes-Korteweg equations with potential forces. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 513-536. doi: 10.3934/dcds.2015.35.513

[6]

Junxiong Jia, Jigen Peng, Kexue Li. On the decay and stability of global solutions to the 3D inhomogeneous MHD system. Communications on Pure & Applied Analysis, 2017, 16 (3) : 745-780. doi: 10.3934/cpaa.2017036

[7]

Linghai Zhang. Decay estimates with sharp rates of global solutions of nonlinear systems of fluid dynamics equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2181-2200. doi: 10.3934/dcdss.2016091

[8]

Ming He, Jianwen Zhang. Global cylindrical solution to the compressible MHD equations in an exterior domain. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1841-1865. doi: 10.3934/cpaa.2009.8.1841

[9]

Yingshan Chen, Shijin Ding, Wenjun Wang. Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5287-5307. doi: 10.3934/dcds.2016032

[10]

Qing Chen, Zhong Tan. Time decay of solutions to the compressible Euler equations with damping. Kinetic & Related Models, 2014, 7 (4) : 605-619. doi: 10.3934/krm.2014.7.605

[11]

Ryo Ikehata, Shingo Kitazaki. Optimal energy decay rates for some wave equations with double damping terms. Evolution Equations & Control Theory, 2019, 8 (4) : 825-846. doi: 10.3934/eect.2019040

[12]

Zhong Tan, Qiuju Xu, Huaqiao Wang. Global existence and convergence rates for the compressible magnetohydrodynamic equations without heat conductivity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 5083-5105. doi: 10.3934/dcds.2015.35.5083

[13]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[14]

Yu-Zhu Wang, Yin-Xia Wang. Local existence of strong solutions to the three dimensional compressible MHD equations with partial viscosity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 851-866. doi: 10.3934/cpaa.2013.12.851

[15]

Lan Zeng, Guoxi Ni, Yingying Li. Low Mach number limit of strong solutions for 3-D full compressible MHD equations with Dirichlet boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5503-5522. doi: 10.3934/dcdsb.2019068

[16]

Xinghong Pan, Jiang Xu. Global existence and optimal decay estimates of the compressible viscoelastic flows in $ L^p $ critical spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2021-2057. doi: 10.3934/dcds.2019085

[17]

Barbara Kaltenbacher, Irena Lasiecka. Global existence and exponential decay rates for the Westervelt equation. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 503-523. doi: 10.3934/dcdss.2009.2.503

[18]

Huali Zhang. Global large smooth solutions for 3-D Hall-magnetohydrodynamics. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6669-6682. doi: 10.3934/dcds.2019290

[19]

Yinxia Wang, Hengjun Zhao. Global existence and decay estimate of classical solutions to the compressible viscoelastic flows with self-gravitating. Communications on Pure & Applied Analysis, 2018, 17 (2) : 347-374. doi: 10.3934/cpaa.2018020

[20]

John A. D. Appleby, Alexandra Rodkina, Henri Schurz. Pathwise non-exponential decay rates of solutions of scalar nonlinear stochastic differential equations. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : 667-696. doi: 10.3934/dcdsb.2006.6.667

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]