April  2016, 36(4): 2193-2204. doi: 10.3934/dcds.2016.36.2193

Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge

1. 

Fachbereich Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany

Received  November 2014 Revised  July 2015 Published  September 2015

We consider the Maxwell-Chern-Simons-Higgs system in Lorenz gauge and use a null condition to show local well-psoedness for low regularity data. This improves a recent result of J. Yuan.
Citation: Hartmut Pecher. Local solutions with infinite energy of the Maxwell-Chern-Simons-Higgs system in Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2193-2204. doi: 10.3934/dcds.2016.36.2193
References:
[1]

P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions,, Contemporary Math., 526 (2010), 125. doi: 10.1090/conm/526/10379.

[2]

D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system,, J. Math. Phys., 43 (2002), 5470. doi: 10.1063/1.1507609.

[3]

C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons,, Phys. Letters B, 252 (1990), 79. doi: 10.1016/0370-2693(90)91084-O.

[4]

S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy,, Duke Math. J., 74 (1994), 19. doi: 10.1215/S0012-7094-94-07402-4.

[5]

S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge,, Comm. PDE, 35 (2010), 1029. doi: 10.1080/03605301003717100.

[6]

S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy,, Discrete Cont. Dyn. Syst., 33 (2013), 2531. doi: 10.3934/dcds.2013.33.2531.

[7]

J. Yuan, On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge,, Discrete Cont. Dyn. Syst., 34 (2014), 2389. doi: 10.3934/dcds.2014.34.2389.

show all references

References:
[1]

P. d'Ancona, D. Foschi and S. Selberg, Product estimates for wave-Sobolev spaces in 2+1 and 1+1 dimensions,, Contemporary Math., 526 (2010), 125. doi: 10.1090/conm/526/10379.

[2]

D. Chae and M. Chae, The global existence in the Cauchy problem of the Maxwell-Chern-Simons-Higgs system,, J. Math. Phys., 43 (2002), 5470. doi: 10.1063/1.1507609.

[3]

C. Lee, K. Lee and H. Min, Self-dual Maxwell-Chern-Simons solitons,, Phys. Letters B, 252 (1990), 79. doi: 10.1016/0370-2693(90)91084-O.

[4]

S. Klainerman and M. Machedon, On the Maxwell-Klein-Gordon equation with finite energy,, Duke Math. J., 74 (1994), 19. doi: 10.1215/S0012-7094-94-07402-4.

[5]

S. Selberg and A. Tesfahun, Finite energy global well-posedness of the Maxwell-Klein-Gordon system in Lorenz gauge,, Comm. PDE, 35 (2010), 1029. doi: 10.1080/03605301003717100.

[6]

S. Selberg and A. Tesfahun, Global well-posedness of the Chern-Simons-Higgs equations with finite energy,, Discrete Cont. Dyn. Syst., 33 (2013), 2531. doi: 10.3934/dcds.2013.33.2531.

[7]

J. Yuan, On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge,, Discrete Cont. Dyn. Syst., 34 (2014), 2389. doi: 10.3934/dcds.2014.34.2389.

[1]

Jianjun Yuan. On the well-posedness of Maxwell-Chern-Simons-Higgs system in the Lorenz gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2389-2403. doi: 10.3934/dcds.2014.34.2389

[2]

Sigmund Selberg, Achenef Tesfahun. Global well-posedness of the Chern-Simons-Higgs equations with finite energy. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2531-2546. doi: 10.3934/dcds.2013.33.2531

[3]

Magdalena Czubak, Nina Pikula. Low regularity well-posedness for the 2D Maxwell-Klein-Gordon equation in the Coulomb gauge. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1669-1683. doi: 10.3934/cpaa.2014.13.1669

[4]

Hartmut Pecher. The Chern-Simons-Higgs and the Chern-Simons-Dirac equations in Fourier-Lebesgue spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4875-4893. doi: 10.3934/dcds.2019199

[5]

Hyungjin Huh. Towards the Chern-Simons-Higgs equation with finite energy. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1145-1159. doi: 10.3934/dcds.2011.30.1145

[6]

Jishan Fan, Yueling Jia. Local well-posedness of the full compressible Navier-Stokes-Maxwell system with vacuum. Kinetic & Related Models, 2018, 11 (1) : 97-106. doi: 10.3934/krm.2018005

[7]

Nikolaos Bournaveas, Timothy Candy, Shuji Machihara. A note on the Chern-Simons-Dirac equations in the Coulomb gauge. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2693-2701. doi: 10.3934/dcds.2014.34.2693

[8]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[9]

Youngae Lee. Topological solutions in the Maxwell-Chern-Simons model with anomalous magnetic moment. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1293-1314. doi: 10.3934/dcds.2018053

[10]

Yong Zhou, Jishan Fan. Local well-posedness for the ideal incompressible density dependent magnetohydrodynamic equations. Communications on Pure & Applied Analysis, 2010, 9 (3) : 813-818. doi: 10.3934/cpaa.2010.9.813

[11]

Caochuan Ma, Zaihong Jiang, Renhui Wan. Local well-posedness for the tropical climate model with fractional velocity diffusion. Kinetic & Related Models, 2016, 9 (3) : 551-570. doi: 10.3934/krm.2016006

[12]

Timur Akhunov. Local well-posedness of quasi-linear systems generalizing KdV. Communications on Pure & Applied Analysis, 2013, 12 (2) : 899-921. doi: 10.3934/cpaa.2013.12.899

[13]

Hung Luong. Local well-posedness for the Zakharov system on the background of a line soliton. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2657-2682. doi: 10.3934/cpaa.2018126

[14]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[15]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[16]

Reinhard Racke, Jürgen Saal. Hyperbolic Navier-Stokes equations I: Local well-posedness. Evolution Equations & Control Theory, 2012, 1 (1) : 195-215. doi: 10.3934/eect.2012.1.195

[17]

Yongye Zhao, Yongsheng Li, Wei Yan. Local Well-posedness and Persistence Property for the Generalized Novikov Equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 803-820. doi: 10.3934/dcds.2014.34.803

[18]

M. Keel, Tristan Roy, Terence Tao. Global well-posedness of the Maxwell-Klein-Gordon equation below the energy norm. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 573-621. doi: 10.3934/dcds.2011.30.573

[19]

Gaocheng Yue, Chengkui Zhong. On the global well-posedness to the 3-D Navier-Stokes-Maxwell system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5817-5835. doi: 10.3934/dcds.2016056

[20]

Sergey Zelik, Jon Pennant. Global well-posedness in uniformly local spaces for the Cahn-Hilliard equation in $\mathbb{R}^3$. Communications on Pure & Applied Analysis, 2013, 12 (1) : 461-480. doi: 10.3934/cpaa.2013.12.461

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]