• Previous Article
    Lipschitz dependence of viscosity solutions of Hamilton-Jacobi equations with respect to the parameter
  • DCDS Home
  • This Issue
  • Next Article
    On the persistence of lower-dimensional elliptic tori with prescribed frequencies in reversible systems
March  2016, 36(3): 1661-1675. doi: 10.3934/dcds.2016.36.1661

The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas

1. 

Department of Mathematics, Yunnan University, Kunming 650091

2. 

Department of Mathematics and Research Institute for Basic Sciences, Kyung Hee University, Seoul 130-701, South Korea

Received  November 2014 Revised  March 2015 Published  August 2015

We study the regularity of sonic curves from a two-dimensional Riemann problem for the nonlinear wave system of Chaplygin gas, which is an essential step for the global existence of solutions to the two-dimensional Riemann problems. As a result, we establish the global existence of uniformly smooth solutions in the semi-hyperbolic patches up to the sonic boundary, where the degeneracy of hyperbolicity occurs. Furthermore, we show the $C^1$-regularity of sonic curves.
Citation: Qin Wang, Kyungwoo Song. The regularity of sonic curves for the two-dimensional Riemann problems of the nonlinear wave system of Chaplygin gas. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1661-1675. doi: 10.3934/dcds.2016.36.1661
References:
[1]

M. Brio and J. K. Hunter, Mach reflection for the two-dimensional Burgers equation,, Phys. D, 60 (1992), 194. doi: 10.1016/0167-2789(92)90236-G.

[2]

S. Čanić and B. L. Keyfitz, An elliptic problem arising from the unsteady transonic small disturbance equation,, J. Differential Equations, 125 (1996), 548. doi: 10.1006/jdeq.1996.0040.

[3]

S. Čanić, B. L. Keyfitz and E. H. Kim, Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection,, Methods Appl. Anal., 7 (2000), 313.

[4]

S. Čanić, B. L. Keyfitz and E. H. Kim, Free boundary problems for nonlinear wave equations: Mach stems for interacting shocks,, SIAM J. Math. Anal., 37 (2006), 1947. doi: 10.1137/S003614100342989X.

[5]

G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type,, J. Amer. Math. Soc., 16 (2003), 461. doi: 10.1090/S0894-0347-03-00422-3.

[6]

G.-Q. Chen and M. Feldman, Steady transonic shock and free boundary problems in infinite cylinders for the Euler equations,, Comm. Pure Appl. Math., 57 (2004), 310. doi: 10.1002/cpa.3042.

[7]

S. Chen and A. Qu, Two-dimensional Riemann problems for Chaplygin gas,, SIAM J. Math. Anal., 44 (2012), 2146. doi: 10.1137/110838091.

[8]

H. Cheng and H. Yang, Riemann problem for the relativistic Chaplygin Euler equations,, J. Math. Anal. Appl., 381 (2011), 17. doi: 10.1016/j.jmaa.2011.04.017.

[9]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves,, Interscience, (1948).

[10]

Z. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics,, Arch. Ration. Mech. Anal., 155 (2000), 277. doi: 10.1007/s002050000113.

[11]

V. Elling and T.-P. Liu, The ellipticity principle for steady and selfsimilar polytropic potential flow,, J. Hyperbolic Differential Equations, 2 (2005), 909. doi: 10.1142/S0219891605000646.

[12]

J. Glimm, X. Ji, J. Li, X. Li, P. Zhang, T. Zhang and Y. Zheng, Transonic shock formation in a rarefaction Riemann problem for the 2-D compressible Euler equations,, SIAM J. Appl. Math., 69 (2008), 720. doi: 10.1137/07070632X.

[13]

Y. Hu and G. Wang, Semi-hyperbolic patches of solutions to the two-dimensional nonlinear wave system for Chaplygin gases,, J. Differential Equations, 257 (2014), 1567. doi: 10.1016/j.jde.2014.05.020.

[14]

E. H. Kim, An interaction of a rarefaction wave and a transonic shock for the self-similar two-dimensional nonlinear wave system,, Comm. Partial Differential Equations, 37 (2012), 610. doi: 10.1080/03605302.2011.653615.

[15]

E. H. Kim, A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation,, J. Differential Equations, 248 (2010), 2906. doi: 10.1016/j.jde.2010.02.021.

[16]

E. H. Kim, Subsonic solutions for compressible transonic potential flows,, J. Differential Equations, 233 (2007), 276. doi: 10.1016/j.jde.2006.10.013.

[17]

E. H. Kim and K. Song, Classical solutions for the pressure-gradient equations in non-smooth and non-convex domains,, J. Math. Anal. Appl., 293 (2004), 541. doi: 10.1016/j.jmaa.2004.01.016.

[18]

G. Lai, W. C. Sheng and Y. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in multi-dimensions,, Discrete Contin. Dyn. Syst., 31 (2011), 489. doi: 10.3934/dcds.2011.31.489.

[19]

Z. Lei and Y. Zheng, A complete global solution to the pressure gradient equation,, J. Differential Equations, 236 (2007), 280. doi: 10.1016/j.jde.2007.01.024.

[20]

M. Li and Y. Zheng, Semi-hyperbolic patches of solutions to the two-dimensional Euler equations,, Arch. Ration. Mech. Anal., 201 (2011), 1069. doi: 10.1007/s00205-011-0410-6.

[21]

D. Serre, Multidimensional shock interaction for a Chaplygin gas,, Arch. Ration. Mech. Anal., 191 (2009), 539. doi: 10.1007/s00205-008-0110-z.

[22]

K. Song, Semi-hyperbolic patches arising from a transonic shock in simple waves interaction,, J. Korean Math. Soc., 50 (2013), 945. doi: 10.4134/JKMS.2013.50.5.945.

[23]

K. Song, Q. Wang and Y. Zheng, The regularity of semi-hyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics,, SIAM J. Math. Anal., 47 (2015), 2200. doi: 10.1137/140964382.

[24]

K. Song and Y. Zheng, Semi-hyperbolic patches of the pressure gradient system,, Disc. Cont. Dyna. Syst., 24 (2009), 1365. doi: 10.3934/dcds.2009.24.1365.

[25]

A. M. Tesdall, R. Sanders and B. L. Keyfitz, The triple point paradox for the nonlinear wave system,, SIAM J. Appl. Math., 67 (2006), 321. doi: 10.1137/060660758.

[26]

G. Wang, B. Chen and Y. Hu, The two-dimensional Riemann problem for Chaplygin gas dynamics with three constant states,, J. Math. Anal. Appl., 393 (2012), 544. doi: 10.1016/j.jmaa.2012.03.017.

[27]

Q. Wang and Y. Zheng, The regularity of semi-hyperbolic patches at sonic lines for the pressure gradient equation in gas dynamics,, Indiana Univ. Math. J., 63 (2014), 385. doi: 10.1512/iumj.2014.63.5244.

[28]

T. Zhang and Y. Zheng, Sonic-supersonic solutions for the steady Euler equations,, Indiana Univ. Math. J., 63 (2014), 1785. doi: 10.1512/iumj.2014.63.5434.

[29]

Y. Zheng, Existence of solutions to the transonic pressure gradient equations of the compressible Euler equations in elliptic regions,, Comm. Partial Differential Equations, 22 (1997), 1849. doi: 10.1080/03605309708821323.

show all references

References:
[1]

M. Brio and J. K. Hunter, Mach reflection for the two-dimensional Burgers equation,, Phys. D, 60 (1992), 194. doi: 10.1016/0167-2789(92)90236-G.

[2]

S. Čanić and B. L. Keyfitz, An elliptic problem arising from the unsteady transonic small disturbance equation,, J. Differential Equations, 125 (1996), 548. doi: 10.1006/jdeq.1996.0040.

[3]

S. Čanić, B. L. Keyfitz and E. H. Kim, Free boundary problems for the unsteady transonic small disturbance equation: Transonic regular reflection,, Methods Appl. Anal., 7 (2000), 313.

[4]

S. Čanić, B. L. Keyfitz and E. H. Kim, Free boundary problems for nonlinear wave equations: Mach stems for interacting shocks,, SIAM J. Math. Anal., 37 (2006), 1947. doi: 10.1137/S003614100342989X.

[5]

G.-Q. Chen and M. Feldman, Multidimensional transonic shocks and free boundary problems for nonlinear equations of mixed type,, J. Amer. Math. Soc., 16 (2003), 461. doi: 10.1090/S0894-0347-03-00422-3.

[6]

G.-Q. Chen and M. Feldman, Steady transonic shock and free boundary problems in infinite cylinders for the Euler equations,, Comm. Pure Appl. Math., 57 (2004), 310. doi: 10.1002/cpa.3042.

[7]

S. Chen and A. Qu, Two-dimensional Riemann problems for Chaplygin gas,, SIAM J. Math. Anal., 44 (2012), 2146. doi: 10.1137/110838091.

[8]

H. Cheng and H. Yang, Riemann problem for the relativistic Chaplygin Euler equations,, J. Math. Anal. Appl., 381 (2011), 17. doi: 10.1016/j.jmaa.2011.04.017.

[9]

R. Courant and K. O. Friedrichs, Supersonic Flow and Shock Waves,, Interscience, (1948).

[10]

Z. Dai and T. Zhang, Existence of a global smooth solution for a degenerate Goursat problem of gas dynamics,, Arch. Ration. Mech. Anal., 155 (2000), 277. doi: 10.1007/s002050000113.

[11]

V. Elling and T.-P. Liu, The ellipticity principle for steady and selfsimilar polytropic potential flow,, J. Hyperbolic Differential Equations, 2 (2005), 909. doi: 10.1142/S0219891605000646.

[12]

J. Glimm, X. Ji, J. Li, X. Li, P. Zhang, T. Zhang and Y. Zheng, Transonic shock formation in a rarefaction Riemann problem for the 2-D compressible Euler equations,, SIAM J. Appl. Math., 69 (2008), 720. doi: 10.1137/07070632X.

[13]

Y. Hu and G. Wang, Semi-hyperbolic patches of solutions to the two-dimensional nonlinear wave system for Chaplygin gases,, J. Differential Equations, 257 (2014), 1567. doi: 10.1016/j.jde.2014.05.020.

[14]

E. H. Kim, An interaction of a rarefaction wave and a transonic shock for the self-similar two-dimensional nonlinear wave system,, Comm. Partial Differential Equations, 37 (2012), 610. doi: 10.1080/03605302.2011.653615.

[15]

E. H. Kim, A global subsonic solution to an interacting transonic shock for the self-similar nonlinear wave equation,, J. Differential Equations, 248 (2010), 2906. doi: 10.1016/j.jde.2010.02.021.

[16]

E. H. Kim, Subsonic solutions for compressible transonic potential flows,, J. Differential Equations, 233 (2007), 276. doi: 10.1016/j.jde.2006.10.013.

[17]

E. H. Kim and K. Song, Classical solutions for the pressure-gradient equations in non-smooth and non-convex domains,, J. Math. Anal. Appl., 293 (2004), 541. doi: 10.1016/j.jmaa.2004.01.016.

[18]

G. Lai, W. C. Sheng and Y. Zheng, Simple waves and pressure delta waves for a Chaplygin gas in multi-dimensions,, Discrete Contin. Dyn. Syst., 31 (2011), 489. doi: 10.3934/dcds.2011.31.489.

[19]

Z. Lei and Y. Zheng, A complete global solution to the pressure gradient equation,, J. Differential Equations, 236 (2007), 280. doi: 10.1016/j.jde.2007.01.024.

[20]

M. Li and Y. Zheng, Semi-hyperbolic patches of solutions to the two-dimensional Euler equations,, Arch. Ration. Mech. Anal., 201 (2011), 1069. doi: 10.1007/s00205-011-0410-6.

[21]

D. Serre, Multidimensional shock interaction for a Chaplygin gas,, Arch. Ration. Mech. Anal., 191 (2009), 539. doi: 10.1007/s00205-008-0110-z.

[22]

K. Song, Semi-hyperbolic patches arising from a transonic shock in simple waves interaction,, J. Korean Math. Soc., 50 (2013), 945. doi: 10.4134/JKMS.2013.50.5.945.

[23]

K. Song, Q. Wang and Y. Zheng, The regularity of semi-hyperbolic patches near sonic lines for the 2-D Euler system in gas dynamics,, SIAM J. Math. Anal., 47 (2015), 2200. doi: 10.1137/140964382.

[24]

K. Song and Y. Zheng, Semi-hyperbolic patches of the pressure gradient system,, Disc. Cont. Dyna. Syst., 24 (2009), 1365. doi: 10.3934/dcds.2009.24.1365.

[25]

A. M. Tesdall, R. Sanders and B. L. Keyfitz, The triple point paradox for the nonlinear wave system,, SIAM J. Appl. Math., 67 (2006), 321. doi: 10.1137/060660758.

[26]

G. Wang, B. Chen and Y. Hu, The two-dimensional Riemann problem for Chaplygin gas dynamics with three constant states,, J. Math. Anal. Appl., 393 (2012), 544. doi: 10.1016/j.jmaa.2012.03.017.

[27]

Q. Wang and Y. Zheng, The regularity of semi-hyperbolic patches at sonic lines for the pressure gradient equation in gas dynamics,, Indiana Univ. Math. J., 63 (2014), 385. doi: 10.1512/iumj.2014.63.5244.

[28]

T. Zhang and Y. Zheng, Sonic-supersonic solutions for the steady Euler equations,, Indiana Univ. Math. J., 63 (2014), 1785. doi: 10.1512/iumj.2014.63.5434.

[29]

Y. Zheng, Existence of solutions to the transonic pressure gradient equations of the compressible Euler equations in elliptic regions,, Comm. Partial Differential Equations, 22 (1997), 1849. doi: 10.1080/03605309708821323.

[1]

Lihui Guo, Wancheng Sheng, Tong Zhang. The two-dimensional Riemann problem for isentropic Chaplygin gas dynamic system$^*$. Communications on Pure & Applied Analysis, 2010, 9 (2) : 431-458. doi: 10.3934/cpaa.2010.9.431

[2]

Yanbo Hu, Tong Li. The regularity of a degenerate Goursat problem for the 2-D isothermal Euler equations. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3317-3336. doi: 10.3934/cpaa.2019149

[3]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations I. Interaction of shocks and rarefaction waves. Discrete & Continuous Dynamical Systems - A, 1995, 1 (4) : 555-584. doi: 10.3934/dcds.1995.1.555

[4]

Tung Chang, Gui-Qiang Chen, Shuli Yang. On the 2-D Riemann problem for the compressible Euler equations II. Interaction of contact discontinuities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 419-430. doi: 10.3934/dcds.2000.6.419

[5]

Jianjun Chen, Wancheng Sheng. The Riemann problem and the limit solutions as magnetic field vanishes to magnetogasdynamics for generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2018, 17 (1) : 127-142. doi: 10.3934/cpaa.2018008

[6]

Claude-Michel Brauner, Josephus Hulshof, Luca Lorenzi. Stability of the travelling wave in a 2D weakly nonlinear Stefan problem. Kinetic & Related Models, 2009, 2 (1) : 109-134. doi: 10.3934/krm.2009.2.109

[7]

Lihui Guo, Tong Li, Gan Yin. The vanishing pressure limits of Riemann solutions to the Chaplygin gas equations with a source term. Communications on Pure & Applied Analysis, 2017, 16 (1) : 295-310. doi: 10.3934/cpaa.2017014

[8]

Meixiang Huang, Zhi-Qiang Shao. Riemann problem for the relativistic generalized Chaplygin Euler equations. Communications on Pure & Applied Analysis, 2016, 15 (1) : 127-138. doi: 10.3934/cpaa.2016.15.127

[9]

Meng Wang, Wendong Wang, Zhifei Zhang. On the uniqueness of weak solution for the 2-D Ericksen--Leslie system. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 919-941. doi: 10.3934/dcdsb.2016.21.919

[10]

Lingbing He. On the global smooth solution to 2-D fluid/particle system. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 237-263. doi: 10.3934/dcds.2010.27.237

[11]

H. T. Banks, R.C. Smith. Feedback control of noise in a 2-D nonlinear structural acoustics model. Discrete & Continuous Dynamical Systems - A, 1995, 1 (1) : 119-149. doi: 10.3934/dcds.1995.1.119

[12]

Dongbing Zha. Remarks on nonlinear elastic waves in the radial symmetry in 2-D. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 4051-4062. doi: 10.3934/dcds.2016.36.4051

[13]

Eun Heui Kim, Charis Tsikkou. Two dimensional Riemann problems for the nonlinear wave system: Rarefaction wave interactions. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6257-6289. doi: 10.3934/dcds.2017271

[14]

Ju Ge, Wancheng Sheng. The two dimensional gas expansion problem of the Euler equations for the generalized Chaplygin gas. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2733-2748. doi: 10.3934/cpaa.2014.13.2733

[15]

Bingbing Ding, Ingo Witt, Huicheng Yin. Blowup time and blowup mechanism of small data solutions to general 2-D quasilinear wave equations. Communications on Pure & Applied Analysis, 2017, 16 (3) : 719-744. doi: 10.3934/cpaa.2017035

[16]

Xia Ji, Wei Cai. Accurate simulations of 2-D phase shift masks with a generalized discontinuous Galerkin (GDG) method. Discrete & Continuous Dynamical Systems - B, 2011, 15 (2) : 401-415. doi: 10.3934/dcdsb.2011.15.401

[17]

Mingwen Fei, Huicheng Yin. Nodal solutions of 2-D critical nonlinear Schrödinger equations with potentials vanishing at infinity. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2921-2948. doi: 10.3934/dcds.2015.35.2921

[18]

José R. Quintero. Nonlinear stability of solitary waves for a 2-d Benney--Luke equation. Discrete & Continuous Dynamical Systems - A, 2005, 13 (1) : 203-218. doi: 10.3934/dcds.2005.13.203

[19]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[20]

Tian Ma, Shouhong Wang. Global structure of 2-D incompressible flows. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 431-445. doi: 10.3934/dcds.2001.7.431

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]