• Previous Article
    On the existence of global strong solutions to the equations modeling a motion of a rigid body around a viscous fluid
  • DCDS Home
  • This Issue
  • Next Article
    Large-time behavior of the full compressible Euler-Poisson system without the temperature damping
March  2016, 36(3): 1563-1581. doi: 10.3934/dcds.2016.36.1563

Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data

1. 

Department of Applied Mathematics, Donghua University, Shanghai 201620

2. 

College of Information Science and Technology, Donghua University, Shanghai 201620, China, China, China

Received  October 2014 Revised  April 2015 Published  August 2015

In this paper, we study the three-dimensional axisymmetric Boussinesq equations with swirl. We establish the global existence of solutions for the three-dimensional axisymmetric Boussinesq equations for a family of anisotropic initial data.
Citation: Yuming Qin, Yang Wang, Xing Su, Jianlin Zhang. Global existence of solutions for the three-dimensional Boussinesq system with anisotropic data. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1563-1581. doi: 10.3934/dcds.2016.36.1563
References:
[1]

R. A. Adams, Sobolev Spaces, Academic,, New York, (1975).

[2]

D. Adhikari, C. Cao and J. Wu, The 2D Boussinesq equations with vertical viscosity and vertical diffusivity,, J. Differential Equations, 249 (2010), 1078. doi: 10.1016/j.jde.2010.03.021.

[3]

A. Adhikari, C. Cao and J. Wu, Global regularity results for the 2D Boussinesq equations with vertical disspation,, J. Differential Equations, 251 (2011), 1637. doi: 10.1016/j.jde.2011.05.027.

[4]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system,, J. Differential Equations, 233 (2007), 199. doi: 10.1016/j.jde.2006.10.008.

[5]

H. Abidi, T. Hmidi and K. Sahbi, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system,, Discrete Continuous Dynam. Systems - A, 29 (2011), 737. doi: 10.3934/dcds.2011.29.737.

[6]

J. Cao and J. Wu, Global regularity results for the 2D anisotropic Boussinesq equations with vertical dissipation,, Arch. Ration. Mech. Anal., 208 (2013), 985. doi: 10.1007/s00205-013-0610-3.

[7]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms,, Adv. Math., 203 (2006), 497. doi: 10.1016/j.aim.2005.05.001.

[8]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations,, Math. Z., 239 (2002), 645. doi: 10.1007/s002090100317.

[9]

C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bound on the blow-up rate of axisymmetric Navier-Stokes equations,, International Mathematics Reserch Notices, 9 (2008). doi: 10.1093/imrn/rnn016.

[10]

J. Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations,, Ann. Math., 173 (2011), 983. doi: 10.4007/annals.2011.173.2.9.

[11]

J. Fan, G. Nakamura and H. Wang, blow-up criteria of smooth solutions to the 3D Boussinesq system with zero viscosity in a bounded domain,, Nonlinear Anal., 75 (2012), 3436. doi: 10.1016/j.na.2012.01.008.

[12]

T. Hmidi and S. Keraani, On the global well-posedness for the Boussinesq system with zero viscosity,, Indiana Univ. Math. J., 58 (2009), 1591. doi: 10.1512/iumj.2009.58.3590.

[13]

T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for Boussinesq-Navier-Stokes system with critical disspation,, J. Differential Equations, 249 (2010), 2147. doi: 10.1016/j.jde.2010.07.008.

[14]

T. Hmidi, S. Keraani and F. Rousset, Golbal well-posedness for Euler-Boussinesq system with critical disspation,, Comm. Partial Differential Equations, 36 (2011), 420. doi: 10.1080/03605302.2010.518657.

[15]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data,, Ann. I. Poincaŕe-AN., 27 (2010), 1227. doi: 10.1016/j.anihpc.2010.06.001.

[16]

T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data,, J. Funct. Anal., 260 (2011), 745. doi: 10.1016/j.jfa.2010.10.012.

[17]

T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations,, Discrete Continuous Dynam. Systems, 12 (2005), 1.

[18]

T. Y. Hou and C. Li, Dynamic stability of 3D axisymmetric Navier-Stokes equations with swirl,, Comm. Pure Appl. Math., 61 (2008), 661. doi: 10.1002/cpa.20212.

[19]

T. Y. Hou, Z. Lei and C. Li, Global regularity of 3D axi-symmetric Navier-Stokes equations with anisotropic data,, Comm. Partial Differential Equations, 33 (2008), 1622. doi: 10.1080/03605300802108057.

[20]

L. Jin and J. Fan, Uniform regularity for the 2D Boussinesq system with a slip boundary condition,, J. Math. Anal. Appl., 400 (2013), 96. doi: 10.1016/j.jmaa.2012.10.051.

[21]

M. J. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations,, Arch. Rational Mech. Anal., 199 (2011), 739. doi: 10.1007/s00205-010-0357-z.

[22]

X. Liu and Y. Li, On the stability of global solutions to the 3D Boussinesq system,, Nonlinear Anal., 95 (2014), 580. doi: 10.1016/j.na.2013.10.011.

[23]

A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean,, Courant Lect. Notes Math., (2003).

[24]

C. Miao and L. Xue, On the golbal well-posedness of a class of Boussinesq-Navier-Stokes systems,, Nonlinear Differential Equations Appl., 18 (2011), 707. doi: 10.1007/s00030-011-0114-5.

[25]

C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation,, Comm. Math. Phy., 321 (2013), 33. doi: 10.1007/s00220-013-1721-2.

[26]

H. K. Moffatt, Some remarks on topological fluids mechanics,, in An Introduction to the Geometry and Topology of Fulid Flows (ed. R. L. Ricca), (2001), 3. doi: 10.1007/978-94-010-0446-6\_1.

[27]

J. Pedlosky, Geophysical Fluid Dynamics,, Springer-Verlag, (1987).

[28]

Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors, Vol. 184,, Advances in Partial Differential Equations, (2008).

[29]

W. Shen and S. Zheng, On the coupled Cahn-Hilliard equations,, Comm. Partial Differential Equations, 18 (1993), 701. doi: 10.1080/03605309308820946.

[30]

X. Xu and Z. Ye, The lifespan of solutions to the inviscid 3D Boussinesq system,, Applied Mathematics Letters, 26 (2013), 854. doi: 10.1016/j.aml.2013.03.009.

[31]

F. Xu and J. Yuan, On the global well-posedness for the 2D Euler-Boussinesq system,, Nonlinear Anal., 17 (2014), 137. doi: 10.1016/j.nonrwa.2013.11.001.

[32]

X. Yang and Y. Qin, A regularity criteria for the 3D Boussinesq equations in Besov spaces,, preprint, (2011).

[33]

S. Zheng, Nonlinear Evolution Equations, Vol. 133,, Monographs and Surveys in Pure and Applied Mathematics, (2004). doi: 10.1201/9780203492222.

show all references

References:
[1]

R. A. Adams, Sobolev Spaces, Academic,, New York, (1975).

[2]

D. Adhikari, C. Cao and J. Wu, The 2D Boussinesq equations with vertical viscosity and vertical diffusivity,, J. Differential Equations, 249 (2010), 1078. doi: 10.1016/j.jde.2010.03.021.

[3]

A. Adhikari, C. Cao and J. Wu, Global regularity results for the 2D Boussinesq equations with vertical disspation,, J. Differential Equations, 251 (2011), 1637. doi: 10.1016/j.jde.2011.05.027.

[4]

H. Abidi and T. Hmidi, On the global well-posedness for Boussinesq system,, J. Differential Equations, 233 (2007), 199. doi: 10.1016/j.jde.2006.10.008.

[5]

H. Abidi, T. Hmidi and K. Sahbi, On the global regularity of axisymmetric Navier-Stokes-Boussinesq system,, Discrete Continuous Dynam. Systems - A, 29 (2011), 737. doi: 10.3934/dcds.2011.29.737.

[6]

J. Cao and J. Wu, Global regularity results for the 2D anisotropic Boussinesq equations with vertical dissipation,, Arch. Ration. Mech. Anal., 208 (2013), 985. doi: 10.1007/s00205-013-0610-3.

[7]

D. Chae, Global regularity for the 2D Boussinesq equations with partial viscosity terms,, Adv. Math., 203 (2006), 497. doi: 10.1016/j.aim.2005.05.001.

[8]

D. Chae and J. Lee, On the regularity of the axisymmetric solutions of the Navier-Stokes equations,, Math. Z., 239 (2002), 645. doi: 10.1007/s002090100317.

[9]

C. C. Chen, R. M. Strain, T. P. Tsai and H. T. Yau, Lower bound on the blow-up rate of axisymmetric Navier-Stokes equations,, International Mathematics Reserch Notices, 9 (2008). doi: 10.1093/imrn/rnn016.

[10]

J. Y. Chemin, I. Gallagher and M. Paicu, Global regularity for some classes of large solutions to the Navier-Stokes equations,, Ann. Math., 173 (2011), 983. doi: 10.4007/annals.2011.173.2.9.

[11]

J. Fan, G. Nakamura and H. Wang, blow-up criteria of smooth solutions to the 3D Boussinesq system with zero viscosity in a bounded domain,, Nonlinear Anal., 75 (2012), 3436. doi: 10.1016/j.na.2012.01.008.

[12]

T. Hmidi and S. Keraani, On the global well-posedness for the Boussinesq system with zero viscosity,, Indiana Univ. Math. J., 58 (2009), 1591. doi: 10.1512/iumj.2009.58.3590.

[13]

T. Hmidi, S. Keraani and F. Rousset, Global well-posedness for Boussinesq-Navier-Stokes system with critical disspation,, J. Differential Equations, 249 (2010), 2147. doi: 10.1016/j.jde.2010.07.008.

[14]

T. Hmidi, S. Keraani and F. Rousset, Golbal well-posedness for Euler-Boussinesq system with critical disspation,, Comm. Partial Differential Equations, 36 (2011), 420. doi: 10.1080/03605302.2010.518657.

[15]

T. Hmidi and F. Rousset, Global well-posedness for the Navier-Stokes-Boussinesq system with axisymmetric data,, Ann. I. Poincaŕe-AN., 27 (2010), 1227. doi: 10.1016/j.anihpc.2010.06.001.

[16]

T. Hmidi and F. Rousset, Global well-posedness for the Euler-Boussinesq system with axisymmetric data,, J. Funct. Anal., 260 (2011), 745. doi: 10.1016/j.jfa.2010.10.012.

[17]

T. Y. Hou and C. Li, Global well-posedness of the viscous Boussinesq equations,, Discrete Continuous Dynam. Systems, 12 (2005), 1.

[18]

T. Y. Hou and C. Li, Dynamic stability of 3D axisymmetric Navier-Stokes equations with swirl,, Comm. Pure Appl. Math., 61 (2008), 661. doi: 10.1002/cpa.20212.

[19]

T. Y. Hou, Z. Lei and C. Li, Global regularity of 3D axi-symmetric Navier-Stokes equations with anisotropic data,, Comm. Partial Differential Equations, 33 (2008), 1622. doi: 10.1080/03605300802108057.

[20]

L. Jin and J. Fan, Uniform regularity for the 2D Boussinesq system with a slip boundary condition,, J. Math. Anal. Appl., 400 (2013), 96. doi: 10.1016/j.jmaa.2012.10.051.

[21]

M. J. Lai, R. Pan and K. Zhao, Initial boundary value problem for two-dimensional viscous Boussinesq equations,, Arch. Rational Mech. Anal., 199 (2011), 739. doi: 10.1007/s00205-010-0357-z.

[22]

X. Liu and Y. Li, On the stability of global solutions to the 3D Boussinesq system,, Nonlinear Anal., 95 (2014), 580. doi: 10.1016/j.na.2013.10.011.

[23]

A. Majda, Introduction to PDEs and Waves for the Atmosphere and Ocean,, Courant Lect. Notes Math., (2003).

[24]

C. Miao and L. Xue, On the golbal well-posedness of a class of Boussinesq-Navier-Stokes systems,, Nonlinear Differential Equations Appl., 18 (2011), 707. doi: 10.1007/s00030-011-0114-5.

[25]

C. Miao and X. Zheng, On the global well-posedness for the Boussinesq system with horizontal dissipation,, Comm. Math. Phy., 321 (2013), 33. doi: 10.1007/s00220-013-1721-2.

[26]

H. K. Moffatt, Some remarks on topological fluids mechanics,, in An Introduction to the Geometry and Topology of Fulid Flows (ed. R. L. Ricca), (2001), 3. doi: 10.1007/978-94-010-0446-6\_1.

[27]

J. Pedlosky, Geophysical Fluid Dynamics,, Springer-Verlag, (1987).

[28]

Y. Qin, Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors, Vol. 184,, Advances in Partial Differential Equations, (2008).

[29]

W. Shen and S. Zheng, On the coupled Cahn-Hilliard equations,, Comm. Partial Differential Equations, 18 (1993), 701. doi: 10.1080/03605309308820946.

[30]

X. Xu and Z. Ye, The lifespan of solutions to the inviscid 3D Boussinesq system,, Applied Mathematics Letters, 26 (2013), 854. doi: 10.1016/j.aml.2013.03.009.

[31]

F. Xu and J. Yuan, On the global well-posedness for the 2D Euler-Boussinesq system,, Nonlinear Anal., 17 (2014), 137. doi: 10.1016/j.nonrwa.2013.11.001.

[32]

X. Yang and Y. Qin, A regularity criteria for the 3D Boussinesq equations in Besov spaces,, preprint, (2011).

[33]

S. Zheng, Nonlinear Evolution Equations, Vol. 133,, Monographs and Surveys in Pure and Applied Mathematics, (2004). doi: 10.1201/9780203492222.

[1]

Cheng-Jie Liu, Ya-Guang Wang, Tong Yang. Global existence of weak solutions to the three-dimensional Prandtl equations with a special structure. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 2011-2029. doi: 10.3934/dcdss.2016082

[2]

Hiroshi Matano, Yoichiro Mori. Global existence and uniqueness of a three-dimensional model of cellular electrophysiology. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1573-1636. doi: 10.3934/dcds.2011.29.1573

[3]

Ciprian Foias, Ricardo Rosa, Roger Temam. Topological properties of the weak global attractor of the three-dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1611-1631. doi: 10.3934/dcds.2010.27.1611

[4]

Daniel Pardo, José Valero, Ángel Giménez. Global attractors for weak solutions of the three-dimensional Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-22. doi: 10.3934/dcdsb.2018279

[5]

Luigi Ambrosio, Maria Colombo, Guido De Philippis, Alessio Figalli. A global existence result for the semigeostrophic equations in three dimensional convex domains. Discrete & Continuous Dynamical Systems - A, 2014, 34 (4) : 1251-1268. doi: 10.3934/dcds.2014.34.1251

[6]

Hua Zhong, Chunlai Mu, Ke Lin. Global weak solution and boundedness in a three-dimensional competing chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3875-3898. doi: 10.3934/dcds.2018168

[7]

Xue-Li Song, Yan-Ren Hou. Attractors for the three-dimensional incompressible Navier-Stokes equations with damping. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 239-252. doi: 10.3934/dcds.2011.31.239

[8]

Igor Kukavica, Vlad C. Vicol. The domain of analyticity of solutions to the three-dimensional Euler equations in a half space. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 285-303. doi: 10.3934/dcds.2011.29.285

[9]

Zeqi Zhu, Caidi Zhao. Pullback attractor and invariant measures for the three-dimensional regularized MHD equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1461-1477. doi: 10.3934/dcds.2018060

[10]

Madalina Petcu, Roger Temam, Djoko Wirosoetisno. Averaging method applied to the three-dimensional primitive equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5681-5707. doi: 10.3934/dcds.2016049

[11]

Nuutti Hyvönen, Martti Kalke, Matti Lassas, Henri Setälä, Samuli Siltanen. Three-dimensional dental X-ray imaging by combination of panoramic and projection data. Inverse Problems & Imaging, 2010, 4 (2) : 257-271. doi: 10.3934/ipi.2010.4.257

[12]

Arun K. Kulshreshth, Andreas Alpers, Gabor T. Herman, Erik Knudsen, Lajos Rodek, Henning F. Poulsen. A greedy method for reconstructing polycrystals from three-dimensional X-ray diffraction data. Inverse Problems & Imaging, 2009, 3 (1) : 69-85. doi: 10.3934/ipi.2009.3.69

[13]

Michele Campiti, Giovanni P. Galdi, Matthias Hieber. Global existence of strong solutions for $2$-dimensional Navier-Stokes equations on exterior domains with growing data at infinity. Communications on Pure & Applied Analysis, 2014, 13 (4) : 1613-1627. doi: 10.3934/cpaa.2014.13.1613

[14]

Bingkang Huang, Lan Zhang. A global existence of classical solutions to the two-dimensional Vlasov-Fokker-Planck and magnetohydrodynamics equations with large initial data. Kinetic & Related Models, 2019, 12 (2) : 357-396. doi: 10.3934/krm.2019016

[15]

Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure & Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839

[16]

Weiping Yan. Existence of weak solutions to the three-dimensional density-dependent generalized incompressible magnetohydrodynamic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1359-1385. doi: 10.3934/dcds.2015.35.1359

[17]

Magdalena Nockowska-Rosiak, Piotr Hachuła, Ewa Schmeidel. Existence of uncountably many asymptotically constant solutions to discrete nonlinear three-dimensional system with $p$-Laplacian. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 369-375. doi: 10.3934/dcdsb.2018025

[18]

Irena PawŃow, Wojciech M. Zajączkowski. Global regular solutions to three-dimensional thermo-visco-elasticity with nonlinear temperature-dependent specific heat. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1331-1372. doi: 10.3934/cpaa.2017065

[19]

Adam Larios, E. S. Titi. On the higher-order global regularity of the inviscid Voigt-regularization of three-dimensional hydrodynamic models. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 603-627. doi: 10.3934/dcdsb.2010.14.603

[20]

Gianluca Mola. Global attractors for a three-dimensional conserved phase-field system with memory. Communications on Pure & Applied Analysis, 2008, 7 (2) : 317-353. doi: 10.3934/cpaa.2008.7.317

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]