January  2016, 36(1): 151-169. doi: 10.3934/dcds.2016.36.151

Stabilization in a chemotaxis model for tumor invasion

1. 

Department of Mathematics, Tokyo University of Science, Tokyo 162-8601, Japan

2. 

Center for the Advancement of Higher Education, Faculty of Engineering, Kinki University, Takayaumenobe 1, Higashihiroshimashi, Hiroshima 739-2116

3. 

Institut für Mathematik, Universität Paderborn, 33098 Paderborn

4. 

Department of Mathematics, Science University of Tokyo, 26 Wakamiya-cho, Shinjuku-ku, Tokyo 162-8601

Received  August 2014 Revised  April 2015 Published  June 2015

This paper deals with the chemotaxis system \[ \begin{cases} u_t=\Delta u - \nabla \cdot (u\nabla v), \qquad x\in \Omega, \ t>0, \\ v_t=\Delta v + wz, \qquad x\in \Omega, \ t>0, \\ w_t=-wz, \qquad x\in \Omega, \ t>0, \\ z_t=\Delta z - z + u, \qquad x\in \Omega, \ t>0, \end{cases} \] in a smoothly bounded domain $\Omega \subset \mathbb{R}^n$, $n \le 3$, that has recently been proposed as a model for tumor invasion in which the role of an active extracellular matrix is accounted for.
    It is shown that for any choice of nonnegative and suitably regular initial data $(u_0,v_0,w_0,z_0)$, a corresponding initial-boundary value problem of Neumann type possesses a global solution which is bounded. Moreover, it is proved that whenever $u_0\not\equiv 0$, these solutions approach a certain spatially homogeneous equilibrium in the sense that as $t\to\infty$,
    $u(x,t)\to \overline{u_0}$ ,    $v(x,t) \to \overline{v_0} + \overline{w_0}$,    $w(x,t) \to 0$    and     $z(x,t) \to \overline{u_0}$,     uniformly with respect to $x\in\Omega$, where $\overline{u_0}:=\frac{1}{|\Omega|} \int_{\Omega} u_0$, $\overline{v_0}:=\frac{1}{|\Omega|} \int_{\Omega} v_0$    and    $\overline{w_0}:=\frac{1}{|\Omega|} \int_{\Omega} w_0$.
Citation: Kentarou Fujie, Akio Ito, Michael Winkler, Tomomi Yokota. Stabilization in a chemotaxis model for tumor invasion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 151-169. doi: 10.3934/dcds.2016.36.151
References:
[1]

A. R. A. Anderson, A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion,, Math. Med. BIOL. IMA J., 22 (2005), 163. doi: 10.1093/imammb/dqi005.

[2]

M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of tissue invasion,, in Cancer modelling and simulation, (2003), 269.

[3]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity,, Net. Hetero. Med., 1 (2006), 399. doi: 10.3934/nhm.2006.1.399.

[4]

A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks,, J. Math. Anal. Appl., 272 (2002), 138. doi: 10.1016/S0022-247X(02)00147-6.

[5]

K. Fujie, A. Ito and T. Yokota, Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type,, Adv. Math. Sci. Appl., 24 (2014), 67.

[6]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion,, Cancer Res., 56 (1996), 5745.

[7]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633.

[8]

T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model,, Math. Models Methods Appl. Sci., 23 (2013), 165. doi: 10.1142/S0218202512500480.

[9]

K. Kang, A. Stevens and J. J. L. Velázquez, Qualitative behavior of a Keller-Segel model with non-diffusive memory,, Commun. Partial Differ. Equations, 35 (2010), 245. doi: 10.1080/03605300903473400.

[10]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[11]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type,, Amer. Math. Soc. Transl., (1968).

[12]

G. Liţcanu and C. Morales-Rodrigo, Asymptotic behaviour of global solutions to a model of cell invasion,, Math. Mod. Meth. Appl. Sci., 20 (2010), 1721. doi: 10.1142/S0218202510004775.

[13]

A. Marciniak-Czochra and M. Ptashnyk, Boundedness of solutions of a haptotaxis model,, Math. Models Methods Appl. Sci., 20 (2010), 449. doi: 10.1142/S0218202510004301.

[14]

C. Morales-Rodrigo, Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours,, Math. Comput. Modelling, 47 (2008), 604. doi: 10.1016/j.mcm.2007.02.031.

[15]

N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional Keller-Segel system,, preprint., ().

[16]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkc. Ekvacioj, 40 (1997), 411.

[17]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations,, Funkcialaj Ekvacioj, 44 (2001), 441.

[18]

P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts, (2007).

[19]

C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion,, SIAM J. Math. Anal., 46 (2014), 1969. doi: 10.1137/13094058X.

[20]

Z. Szymańska, C. Morales-Rodrigo, M. Lachowicz and M. A. J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions,, Math. Models Methods Appl. Sci., 19 (2009), 257. doi: 10.1142/S0218202509003425.

[21]

Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source,, J. Math. Anal. Appl., 354 (2009), 60. doi: 10.1016/j.jmaa.2008.12.039.

[22]

Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling,, Nonlinear Anal. Real World Appl., 12 (2011), 418. doi: 10.1016/j.nonrwa.2010.06.027.

[23]

Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source,, SIAM J. Math. Anal., 41 (2009), 1533. doi: 10.1137/090751542.

[24]

Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model,, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1067. doi: 10.1017/S0308210512000571.

[25]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model,, Nonlinearity, 27 (2014), 1225. doi: 10.1088/0951-7715/27/6/1225.

[26]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,, J. Differential Equations, 257 (2014), 784. doi: 10.1016/j.jde.2014.04.014.

[27]

C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model,, SIAM J. Math. Anal., 38 (2007), 1694. doi: 10.1137/060655122.

[28]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008.

[29]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, Journal de Mathématiques Pures et Appliquées, 100 (2013), 748. doi: 10.1016/j.matpur.2013.01.020.

show all references

References:
[1]

A. R. A. Anderson, A hybrid mathematical model of solid tumour invasion: The importance of cell adhesion,, Math. Med. BIOL. IMA J., 22 (2005), 163. doi: 10.1093/imammb/dqi005.

[2]

M. A. J. Chaplain and A. R. A. Anderson, Mathematical modelling of tissue invasion,, in Cancer modelling and simulation, (2003), 269.

[3]

M. A. J. Chaplain and G. Lolas, Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity,, Net. Hetero. Med., 1 (2006), 399. doi: 10.3934/nhm.2006.1.399.

[4]

A. Friedman and J. I. Tello, Stability of solutions of chemotaxis equations in reinforced random walks,, J. Math. Anal. Appl., 272 (2002), 138. doi: 10.1016/S0022-247X(02)00147-6.

[5]

K. Fujie, A. Ito and T. Yokota, Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type,, Adv. Math. Sci. Appl., 24 (2014), 67.

[6]

R. A. Gatenby and E. T. Gawlinski, A reaction-diffusion model of cancer invasion,, Cancer Res., 56 (1996), 5745.

[7]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633.

[8]

T. Hillen, K. J. Painter and M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model,, Math. Models Methods Appl. Sci., 23 (2013), 165. doi: 10.1142/S0218202512500480.

[9]

K. Kang, A. Stevens and J. J. L. Velázquez, Qualitative behavior of a Keller-Segel model with non-diffusive memory,, Commun. Partial Differ. Equations, 35 (2010), 245. doi: 10.1080/03605300903473400.

[10]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5.

[11]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type,, Amer. Math. Soc. Transl., (1968).

[12]

G. Liţcanu and C. Morales-Rodrigo, Asymptotic behaviour of global solutions to a model of cell invasion,, Math. Mod. Meth. Appl. Sci., 20 (2010), 1721. doi: 10.1142/S0218202510004775.

[13]

A. Marciniak-Czochra and M. Ptashnyk, Boundedness of solutions of a haptotaxis model,, Math. Models Methods Appl. Sci., 20 (2010), 449. doi: 10.1142/S0218202510004301.

[14]

C. Morales-Rodrigo, Local existence and uniqueness of regular solutions in a model of tissue invasion by solid tumours,, Math. Comput. Modelling, 47 (2008), 604. doi: 10.1016/j.mcm.2007.02.031.

[15]

N. Mizoguchi and M. Winkler, Blow-up in the two-dimensional Keller-Segel system,, preprint., ().

[16]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkc. Ekvacioj, 40 (1997), 411.

[17]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations,, Funkcialaj Ekvacioj, 44 (2001), 441.

[18]

P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, Global Existence and Steady States,, Birkhäuser Advanced Texts, (2007).

[19]

C. Stinner, C. Surulescu and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion,, SIAM J. Math. Anal., 46 (2014), 1969. doi: 10.1137/13094058X.

[20]

Z. Szymańska, C. Morales-Rodrigo, M. Lachowicz and M. A. J. Chaplain, Mathematical modelling of cancer invasion of tissue: The role and effect of nonlocal interactions,, Math. Models Methods Appl. Sci., 19 (2009), 257. doi: 10.1142/S0218202509003425.

[21]

Y. Tao, Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source,, J. Math. Anal. Appl., 354 (2009), 60. doi: 10.1016/j.jmaa.2008.12.039.

[22]

Y. Tao, Global existence for a haptotaxis model of cancer invasion with tissue remodeling,, Nonlinear Anal. Real World Appl., 12 (2011), 418. doi: 10.1016/j.nonrwa.2010.06.027.

[23]

Y. Tao and M. Wang, A combined chemotaxis-haptotaxis system: The role of logistic source,, SIAM J. Math. Anal., 41 (2009), 1533. doi: 10.1137/090751542.

[24]

Y. Tao and M. Winkler, Boundedness and stabilization in a multi-dimensional chemotaxis-haptotaxis model,, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), 1067. doi: 10.1017/S0308210512000571.

[25]

Y. Tao and M. Winkler, Dominance of chemotaxis in a chemotaxis-haptotaxis model,, Nonlinearity, 27 (2014), 1225. doi: 10.1088/0951-7715/27/6/1225.

[26]

Y. Tao and M. Winkler, Energy-type estimates and global solvability in a two-dimensional chemotaxis-haptotaxis model with remodeling of non-diffusible attractant,, J. Differential Equations, 257 (2014), 784. doi: 10.1016/j.jde.2014.04.014.

[27]

C. Walker and G. F. Webb, Global existence of classical solutions for a haptotaxis model,, SIAM J. Math. Anal., 38 (2007), 1694. doi: 10.1137/060655122.

[28]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008.

[29]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, Journal de Mathématiques Pures et Appliquées, 100 (2013), 748. doi: 10.1016/j.matpur.2013.01.020.

[1]

Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011

[2]

Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021

[3]

Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45

[4]

Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737

[5]

Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437

[6]

Risei Kano. The existence of solutions for tumor invasion models with time and space dependent diffusion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 63-74. doi: 10.3934/dcdss.2014.7.63

[7]

Gülnihal Meral, Christian Stinner, Christina Surulescu. On a multiscale model involving cell contractivity and its effects on tumor invasion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 189-213. doi: 10.3934/dcdsb.2015.20.189

[8]

Risei Kano, Akio Ito. The existence of time global solutions for tumor invasion models with constraints. Conference Publications, 2011, 2011 (Special) : 774-783. doi: 10.3934/proc.2011.2011.774

[9]

Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721

[10]

Youshan Tao, J. Ignacio Tello. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 193-207. doi: 10.3934/mbe.2016.13.193

[11]

Sandesh Athni Hiremath, Christina Surulescu, Anna Zhigun, Stefanie Sonner. On a coupled SDE-PDE system modeling acid-mediated tumor invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2339-2369. doi: 10.3934/dcdsb.2018071

[12]

Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161

[13]

Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265

[14]

Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733

[15]

Doan Duy Hai, Atsushi Yagi. Longtime behavior of solutions to chemotaxis-proliferation model with three variables. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3957-3974. doi: 10.3934/dcds.2012.32.3957

[16]

Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183

[17]

Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041

[18]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[19]

Francesca R. Guarguaglini. Stationary solutions and asymptotic behaviour for a chemotaxis hyperbolic model on a network. Networks & Heterogeneous Media, 2018, 13 (1) : 47-67. doi: 10.3934/nhm.2018003

[20]

Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199

2017 Impact Factor: 1.179

Metrics

  • PDF downloads (28)
  • HTML views (0)
  • Cited by (3)

[Back to Top]