# American Institute of Mathematical Sciences

January  2016, 36(1): 151-169. doi: 10.3934/dcds.2016.36.151

## Stabilization in a chemotaxis model for tumor invasion

 1 Department of Mathematics, Tokyo University of Science, Tokyo 162-8601, Japan 2 Center for the Advancement of Higher Education, Faculty of Engineering, Kinki University, Takayaumenobe 1, Higashihiroshimashi, Hiroshima 739-2116 3 Institut für Mathematik, Universität Paderborn, 33098 Paderborn 4 Department of Mathematics, Science University of Tokyo, 26 Wakamiya-cho, Shinjuku-ku, Tokyo 162-8601

Received  August 2014 Revised  April 2015 Published  June 2015

This paper deals with the chemotaxis system $\begin{cases} u_t=\Delta u - \nabla \cdot (u\nabla v), \qquad x\in \Omega, \ t>0, \\ v_t=\Delta v + wz, \qquad x\in \Omega, \ t>0, \\ w_t=-wz, \qquad x\in \Omega, \ t>0, \\ z_t=\Delta z - z + u, \qquad x\in \Omega, \ t>0, \end{cases}$ in a smoothly bounded domain $\Omega \subset \mathbb{R}^n$, $n \le 3$, that has recently been proposed as a model for tumor invasion in which the role of an active extracellular matrix is accounted for.
It is shown that for any choice of nonnegative and suitably regular initial data $(u_0,v_0,w_0,z_0)$, a corresponding initial-boundary value problem of Neumann type possesses a global solution which is bounded. Moreover, it is proved that whenever $u_0\not\equiv 0$, these solutions approach a certain spatially homogeneous equilibrium in the sense that as $t\to\infty$,
$u(x,t)\to \overline{u_0}$ ,    $v(x,t) \to \overline{v_0} + \overline{w_0}$,    $w(x,t) \to 0$    and     $z(x,t) \to \overline{u_0}$,     uniformly with respect to $x\in\Omega$, where $\overline{u_0}:=\frac{1}{|\Omega|} \int_{\Omega} u_0$, $\overline{v_0}:=\frac{1}{|\Omega|} \int_{\Omega} v_0$    and    $\overline{w_0}:=\frac{1}{|\Omega|} \int_{\Omega} w_0$.
Citation: Kentarou Fujie, Akio Ito, Michael Winkler, Tomomi Yokota. Stabilization in a chemotaxis model for tumor invasion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 151-169. doi: 10.3934/dcds.2016.36.151
##### References:

show all references

##### References:
 [1] Kentarou Fujie. Global asymptotic stability in a chemotaxis-growth model for tumor invasion. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 203-209. doi: 10.3934/dcdss.2020011 [2] Yuanyuan Liu, Youshan Tao. Asymptotic behavior in a chemotaxis-growth system with nonlinear production of signals. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 465-475. doi: 10.3934/dcdsb.2017021 [3] Janet Dyson, Eva Sánchez, Rosanna Villella-Bressan, Glenn F. Webb. An age and spatially structured model of tumor invasion with haptotaxis. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 45-60. doi: 10.3934/dcdsb.2007.8.45 [4] Junde Wu, Shangbin Cui. Asymptotic behavior of solutions for parabolic differential equations with invariance and applications to a free boundary problem modeling tumor growth. Discrete & Continuous Dynamical Systems - A, 2010, 26 (2) : 737-765. doi: 10.3934/dcds.2010.26.737 [5] Marco Di Francesco, Alexander Lorz, Peter A. Markowich. Chemotaxis-fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1437-1453. doi: 10.3934/dcds.2010.28.1437 [6] Risei Kano. The existence of solutions for tumor invasion models with time and space dependent diffusion. Discrete & Continuous Dynamical Systems - S, 2014, 7 (1) : 63-74. doi: 10.3934/dcdss.2014.7.63 [7] Gülnihal Meral, Christian Stinner, Christina Surulescu. On a multiscale model involving cell contractivity and its effects on tumor invasion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 189-213. doi: 10.3934/dcdsb.2015.20.189 [8] Risei Kano, Akio Ito. The existence of time global solutions for tumor invasion models with constraints. Conference Publications, 2011, 2011 (Special) : 774-783. doi: 10.3934/proc.2011.2011.774 [9] Zhipeng Qiu, Jun Yu, Yun Zou. The asymptotic behavior of a chemostat model. Discrete & Continuous Dynamical Systems - B, 2004, 4 (3) : 721-727. doi: 10.3934/dcdsb.2004.4.721 [10] Youshan Tao, J. Ignacio Tello. Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences & Engineering, 2016, 13 (1) : 193-207. doi: 10.3934/mbe.2016.13.193 [11] Sandesh Athni Hiremath, Christina Surulescu, Anna Zhigun, Stefanie Sonner. On a coupled SDE-PDE system modeling acid-mediated tumor invasion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2339-2369. doi: 10.3934/dcdsb.2018071 [12] Mykhailo Potomkin. Asymptotic behavior of thermoviscoelastic Berger plate. Communications on Pure & Applied Analysis, 2010, 9 (1) : 161-192. doi: 10.3934/cpaa.2010.9.161 [13] Hunseok Kang. Asymptotic behavior of a discrete turing model. Discrete & Continuous Dynamical Systems - A, 2010, 27 (1) : 265-284. doi: 10.3934/dcds.2010.27.265 [14] Akisato Kubo, Hiroki Hoshino, Katsutaka Kimura. Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model. Conference Publications, 2015, 2015 (special) : 733-744. doi: 10.3934/proc.2015.0733 [15] Doan Duy Hai, Atsushi Yagi. Longtime behavior of solutions to chemotaxis-proliferation model with three variables. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3957-3974. doi: 10.3934/dcds.2012.32.3957 [16] Harald Garcke, Kei Fong Lam. Analysis of a Cahn--Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis. Discrete & Continuous Dynamical Systems - A, 2017, 37 (8) : 4277-4308. doi: 10.3934/dcds.2017183 [17] Chunpeng Wang. Boundary behavior and asymptotic behavior of solutions to a class of parabolic equations with boundary degeneracy. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1041-1060. doi: 10.3934/dcds.2016.36.1041 [18] M. Grasselli, V. Pata. Asymptotic behavior of a parabolic-hyperbolic system. Communications on Pure & Applied Analysis, 2004, 3 (4) : 849-881. doi: 10.3934/cpaa.2004.3.849 [19] Yong Liu. Even solutions of the Toda system with prescribed asymptotic behavior. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1779-1790. doi: 10.3934/cpaa.2011.10.1779 [20] Jingyu Li. Asymptotic behavior of solutions to elliptic equations in a coated body. Communications on Pure & Applied Analysis, 2009, 8 (4) : 1251-1267. doi: 10.3934/cpaa.2009.8.1251

2018 Impact Factor: 1.143