March  2015, 35(3): 935-942. doi: 10.3934/dcds.2015.35.935

Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality

1. 

Department of Mathematics, INS and MOE-LSC, Shanghai Jiao Tong University, Shanghai, China, China, China

Received  February 2014 Revised  April 2014 Published  October 2014

In this paper, we study the best constant of the following discrete Hardy-Littlewood-Sobolev inequality, \begin{equation} \sum_{i,j,i\neq j}\frac{f_{i}g_{j}}{\mid i-j\mid^{n-\alpha}}\leq C_{r,s,\alpha} |f|_{l^r} |g|_{l^s}, \end{equation}where $i,j\in \mathbb Z^n$, $r,s>1$, $0 < \alpha < n$, and $\frac {1} {r} + \frac {1} {s} + \frac {n-\alpha}{n} \geq 2$. Indeed, we prove that the best constant is attainable in the supercritical case $\frac {1}{r} + \frac {1} {s} + \frac {n-\alpha}{n} > 2$.
Citation: Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935
References:
[1]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proceedings of the American Mathematical Society, 88 (1983), 486. doi: 10.1090/S0002-9939-1983-0699419-3. Google Scholar

[2]

X. Chen and X. Zhen, Optimal summation interval and nonexistence of positive solutions to a discrete sytem,, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014), 1720. doi: 10.1016/S0252-9602(14)60117-X. Google Scholar

[3]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations,, Discrete Contin. Dyn. Syst. 2005, (2005), 164. Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083. Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Commun. Pure Appl. Anal., 4 (2005), 1. doi: 10.3934/cpaa.2005.4.1. Google Scholar

[7]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soci., 136 (2008), 955. doi: 10.1090/S0002-9939-07-09232-5. Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Communications in Partial Difference Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar

[9]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Discrete Contin. Dyn. Syst., 12 (2005), 347. doi: 10.3934/dcds.2005.12.347. Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Communications on pure and applied mathematics, 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[11]

Z. Cheng and C. Li, An extended discrete Hardy-Littlewood-Sobolev inequality,, Discrete Contin. Dyn. Syst., 34 (2014), 1951. doi: 10.3934/dcds.2014.34.1951. Google Scholar

[12]

G. Hardy, J. Littlewood and J. Pólya, Inequalities,, $2^{nd}$ edition, (1952). Google Scholar

[13]

C. Li and J. Villavert, An extention of the Hardy-Littlewood-Pólya inequality,, Acta Math. Scientia, 31 (2011), 2285. doi: 10.1016/S0252-9602(11)60400-1. Google Scholar

[14]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Annals of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar

show all references

References:
[1]

H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals,, Proceedings of the American Mathematical Society, 88 (1983), 486. doi: 10.1090/S0002-9939-1983-0699419-3. Google Scholar

[2]

X. Chen and X. Zhen, Optimal summation interval and nonexistence of positive solutions to a discrete sytem,, Acta Math. Sci. Ser. B Engl. Ed., 34 (2014), 1720. doi: 10.1016/S0252-9602(14)60117-X. Google Scholar

[3]

W. Chen, C. Jin, C. Li and J. Lim, Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations,, Discrete Contin. Dyn. Syst. 2005, (2005), 164. Google Scholar

[4]

W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar

[5]

W. Chen and C. Li, Radial symmetry of solutions for some integral systems of Wolff type,, Discrete Contin. Dyn. Syst., 30 (2011), 1083. doi: 10.3934/dcds.2011.30.1083. Google Scholar

[6]

W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Commun. Pure Appl. Anal., 4 (2005), 1. doi: 10.3934/cpaa.2005.4.1. Google Scholar

[7]

W. Chen and C. Li, The best constant in a weighted Hardy-Littlewood-Sobolev inequality,, Proc. Amer. Math. Soci., 136 (2008), 955. doi: 10.1090/S0002-9939-07-09232-5. Google Scholar

[8]

W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Communications in Partial Difference Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar

[9]

W. Chen, C. Li and B. Ou, Qualitative properties of solutions for an integral equation,, Discrete Contin. Dyn. Syst., 12 (2005), 347. doi: 10.3934/dcds.2005.12.347. Google Scholar

[10]

W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Communications on pure and applied mathematics, 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar

[11]

Z. Cheng and C. Li, An extended discrete Hardy-Littlewood-Sobolev inequality,, Discrete Contin. Dyn. Syst., 34 (2014), 1951. doi: 10.3934/dcds.2014.34.1951. Google Scholar

[12]

G. Hardy, J. Littlewood and J. Pólya, Inequalities,, $2^{nd}$ edition, (1952). Google Scholar

[13]

C. Li and J. Villavert, An extention of the Hardy-Littlewood-Pólya inequality,, Acta Math. Scientia, 31 (2011), 2285. doi: 10.1016/S0252-9602(11)60400-1. Google Scholar

[14]

E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Annals of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar

[1]

Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951

[2]

Ze Cheng, Changfeng Gui, Yeyao Hu. Existence of solutions to the supercritical Hardy-Littlewood-Sobolev system with fractional Laplacians. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1345-1358. doi: 10.3934/dcds.2019057

[3]

Ze Cheng, Genggeng Huang, Congming Li. On the Hardy-Littlewood-Sobolev type systems. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2059-2074. doi: 10.3934/cpaa.2016027

[4]

Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987

[5]

Jingbo Dou, Ye Li. Classification of extremal functions to logarithmic Hardy-Littlewood-Sobolev inequality on the upper half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 3939-3953. doi: 10.3934/dcds.2018171

[6]

Gui-Dong Li, Chun-Lei Tang. Existence of ground state solutions for Choquard equation involving the general upper critical Hardy-Littlewood-Sobolev nonlinear term. Communications on Pure & Applied Analysis, 2019, 18 (1) : 285-300. doi: 10.3934/cpaa.2019015

[7]

Xiaoqian Liu, Yutian Lei. Existence of positive solutions for integral systems of the weighted Hardy-Littlewood-Sobolev type. Discrete & Continuous Dynamical Systems - A, 2020, 40 (1) : 467-489. doi: 10.3934/dcds.2020018

[8]

Lorenzo D'Ambrosio, Enzo Mitidieri. Hardy-Littlewood-Sobolev systems and related Liouville theorems. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 653-671. doi: 10.3934/dcdss.2014.7.653

[9]

Wenxiong Chen, Chao Jin, Congming Li, Jisun Lim. Weighted Hardy-Littlewood-Sobolev inequalities and systems of integral equations. Conference Publications, 2005, 2005 (Special) : 164-172. doi: 10.3934/proc.2005.2005.164

[10]

Jianqing Chen. Best constant of 3D Anisotropic Sobolev inequality and its applications. Communications on Pure & Applied Analysis, 2010, 9 (3) : 655-666. doi: 10.3934/cpaa.2010.9.655

[11]

José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138

[12]

Yingshu Lü, Zhongxue Lü. Some properties of solutions to the weighted Hardy-Littlewood-Sobolev type integral system. Discrete & Continuous Dynamical Systems - A, 2016, 36 (7) : 3791-3810. doi: 10.3934/dcds.2016.36.3791

[13]

Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure & Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018

[14]

Hua Jin, Wenbin Liu, Huixing Zhang, Jianjun Zhang. Ground states of nonlinear fractional Choquard equations with Hardy-Littlewood-Sobolev critical growth. Communications on Pure & Applied Analysis, 2020, 19 (1) : 123-144. doi: 10.3934/cpaa.2020008

[15]

Aleksandra Čižmešija, Iva Franjić, Josip Pečarić, Dora Pokaz. On a family of means generated by the Hardy-Littlewood maximal inequality. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 223-231. doi: 10.3934/naco.2012.2.223

[16]

Julián Fernández Bonder, Julio D. Rossi. Asymptotic behavior of the best Sobolev trace constant in expanding and contracting domains. Communications on Pure & Applied Analysis, 2002, 1 (3) : 359-378. doi: 10.3934/cpaa.2002.1.359

[17]

Xumin Wang. Singular Hardy-Trudinger-Moser inequality and the existence of extremals on the unit disc. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2717-2733. doi: 10.3934/cpaa.2019121

[18]

John Villavert. Sharp existence criteria for positive solutions of Hardy--Sobolev type systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 493-515. doi: 10.3934/cpaa.2015.14.493

[19]

Zhihua Huang, Xiaochun Liu. Existence theorem for a class of semilinear totally characteristic elliptic equations involving supercritical cone sobolev exponents. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3201-3216. doi: 10.3934/cpaa.2019144

[20]

Ezequiel R. Barbosa, Marcos Montenegro. On the geometric dependence of Riemannian Sobolev best constants. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1759-1777. doi: 10.3934/cpaa.2009.8.1759

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]