March  2015, 35(3): 917-934. doi: 10.3934/dcds.2015.35.917

The initial-boundary value problem for the compressible viscoelastic flows

1. 

Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, United States

2. 

Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260

Received  March 2014 Revised  March 2014 Published  October 2014

The initial-boundary value problem for the equations of compressible viscoelastic flows is considered in a bounded domain of three-dimensional spatial dimensions. The global existence of strong solution near equilibrium is established. Uniform estimates in $W^{1,q}$ with $q>3$ on the density and deformation gradient are also obtained.
Citation: Xianpeng Hu, Dehua Wang. The initial-boundary value problem for the compressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 917-934. doi: 10.3934/dcds.2015.35.917
References:
[1]

J. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids,, SIAM J. Math. Anal., 33 (2001), 84. doi: 10.1137/S0036141099359317. Google Scholar

[2]

Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions,, Comm. Partial Differential Equations, 31 (2006), 1793. doi: 10.1080/03605300600858960. Google Scholar

[3]

R. Danchin, Density-dependent incompressible fluids in bounded domains,, J. Math. Fluid Mech., 8 (2006), 333. doi: 10.1007/s00021-004-0147-1. Google Scholar

[4]

M. E. Gurtin, An introduction to Continuum Mechanics,, Mathematics in Science and Engineering, (1981). Google Scholar

[5]

X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data,, J. Differential Equations, 249 (2010), 1179. doi: 10.1016/j.jde.2010.03.027. Google Scholar

[6]

X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, J. Differential Equations, 250 (2011), 1200. doi: 10.1016/j.jde.2010.10.017. Google Scholar

[7]

D. Joseph, Fluid Dynamics of Viscoelastic Liquids,, Applied Mathematical Sciences, (1990). doi: 10.1007/978-1-4612-4462-2. Google Scholar

[8]

K. Kunisch and M. Marduel, Optimal control of non-isothermal viscoelastic fluid flow,, J. Non-Newtonian Fluid Mechanics, 88 (2000), 261. Google Scholar

[9]

Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain,, Commun. Math. Sci., 5 (2007), 595. doi: 10.4310/CMS.2007.v5.n3.a5. Google Scholar

[10]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Ration. Mech. Anal., 188 (2008), 371. doi: 10.1007/s00205-007-0089-x. Google Scholar

[11]

Z. Lei, On 2D viscoelasticity with small strain,, Arch. Ration. Mech. Anal., 198 (2010), 13. doi: 10.1007/s00205-010-0346-2. Google Scholar

[12]

Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit,, SIAM J. Math. Anal., 37 (2005), 797. doi: 10.1137/040618813. Google Scholar

[13]

F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Comm. Pure Appl. Math., 58 (2005), 1437. doi: 10.1002/cpa.20074. Google Scholar

[14]

F. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Comm. Pure Appl. Math., 61 (2008), 539. doi: 10.1002/cpa.20219. Google Scholar

[15]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, Oxford Lecture Series in Mathematics and its Applications, (1996). Google Scholar

[16]

P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows,, Chinese Ann. Math. Ser. B, 21 (2000), 131. doi: 10.1142/S0252959900000170. Google Scholar

[17]

C. Liu and N. J. Walkington, An Eulerian description of fluids containing visco-elastic particles,, Arch. Ration. Mech. Anal., 159 (2001), 229. doi: 10.1007/s002050100158. Google Scholar

[18]

A. Matsumura and T. Nishida, The initial-value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67. Google Scholar

[19]

A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids,, Comm. Math. Phys., 89 (1983), 445. doi: 10.1007/BF01214738. Google Scholar

[20]

A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow,, Oxford Lecture Series in Mathematics and its Applications, (2004). Google Scholar

[21]

J. G. Oldroyd, On the formation of rheological equations of state,, Proc. Roy. Soc. London, 200 (1950), 523. doi: 10.1098/rspa.1950.0035. Google Scholar

[22]

J. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids,, Proc. Roy. Soc. London, 245 (1958), 278. doi: 10.1098/rspa.1958.0083. Google Scholar

[23]

J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium,, Arch. Ration. Mech. Anal., 198 (2010), 835. doi: 10.1007/s00205-010-0351-5. Google Scholar

[24]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity,, Longman Scientic and Technicaland copublished in the US with John Wiley, (1987). Google Scholar

[25]

T. C. Sideris, Nonlinear hyperbolic systems and elastodynamics,, Phase space analysis of partial differential equations, II (2004), 451. Google Scholar

[26]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit,, Comm. Pure Appl. Math., 58 (2005), 750. doi: 10.1002/cpa.20049. Google Scholar

show all references

References:
[1]

J. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to viscoelastic fluids,, SIAM J. Math. Anal., 33 (2001), 84. doi: 10.1137/S0036141099359317. Google Scholar

[2]

Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions,, Comm. Partial Differential Equations, 31 (2006), 1793. doi: 10.1080/03605300600858960. Google Scholar

[3]

R. Danchin, Density-dependent incompressible fluids in bounded domains,, J. Math. Fluid Mech., 8 (2006), 333. doi: 10.1007/s00021-004-0147-1. Google Scholar

[4]

M. E. Gurtin, An introduction to Continuum Mechanics,, Mathematics in Science and Engineering, (1981). Google Scholar

[5]

X. Hu and D. Wang, Local strong solution to the compressible viscoelastic flow with large data,, J. Differential Equations, 249 (2010), 1179. doi: 10.1016/j.jde.2010.03.027. Google Scholar

[6]

X. Hu and D. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, J. Differential Equations, 250 (2011), 1200. doi: 10.1016/j.jde.2010.10.017. Google Scholar

[7]

D. Joseph, Fluid Dynamics of Viscoelastic Liquids,, Applied Mathematical Sciences, (1990). doi: 10.1007/978-1-4612-4462-2. Google Scholar

[8]

K. Kunisch and M. Marduel, Optimal control of non-isothermal viscoelastic fluid flow,, J. Non-Newtonian Fluid Mechanics, 88 (2000), 261. Google Scholar

[9]

Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain,, Commun. Math. Sci., 5 (2007), 595. doi: 10.4310/CMS.2007.v5.n3.a5. Google Scholar

[10]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Ration. Mech. Anal., 188 (2008), 371. doi: 10.1007/s00205-007-0089-x. Google Scholar

[11]

Z. Lei, On 2D viscoelasticity with small strain,, Arch. Ration. Mech. Anal., 198 (2010), 13. doi: 10.1007/s00205-010-0346-2. Google Scholar

[12]

Z. Lei and Y. Zhou, Global existence of classical solutions for the two-dimensional Oldroyd model via the incompressible limit,, SIAM J. Math. Anal., 37 (2005), 797. doi: 10.1137/040618813. Google Scholar

[13]

F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Comm. Pure Appl. Math., 58 (2005), 1437. doi: 10.1002/cpa.20074. Google Scholar

[14]

F. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Comm. Pure Appl. Math., 61 (2008), 539. doi: 10.1002/cpa.20219. Google Scholar

[15]

P. L. Lions, Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models,, Oxford Lecture Series in Mathematics and its Applications, (1996). Google Scholar

[16]

P. L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows,, Chinese Ann. Math. Ser. B, 21 (2000), 131. doi: 10.1142/S0252959900000170. Google Scholar

[17]

C. Liu and N. J. Walkington, An Eulerian description of fluids containing visco-elastic particles,, Arch. Ration. Mech. Anal., 159 (2001), 229. doi: 10.1007/s002050100158. Google Scholar

[18]

A. Matsumura and T. Nishida, The initial-value problem for the equations of motion of viscous and heat-conductive gases,, J. Math. Kyoto Univ., 20 (1980), 67. Google Scholar

[19]

A. Matsumura and T. Nishida, Initial-boundary value problems for the equations of motion of compressible viscous and heat-conductive fluids,, Comm. Math. Phys., 89 (1983), 445. doi: 10.1007/BF01214738. Google Scholar

[20]

A. Novotný and I. Straškraba, Introduction to the Mathematical Theory of Compressible Flow,, Oxford Lecture Series in Mathematics and its Applications, (2004). Google Scholar

[21]

J. G. Oldroyd, On the formation of rheological equations of state,, Proc. Roy. Soc. London, 200 (1950), 523. doi: 10.1098/rspa.1950.0035. Google Scholar

[22]

J. G. Oldroyd, Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids,, Proc. Roy. Soc. London, 245 (1958), 278. doi: 10.1098/rspa.1958.0083. Google Scholar

[23]

J. Qian and Z. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium,, Arch. Ration. Mech. Anal., 198 (2010), 835. doi: 10.1007/s00205-010-0351-5. Google Scholar

[24]

M. Renardy, W. J. Hrusa and J. A. Nohel, Mathematical Problems in Viscoelasticity,, Longman Scientic and Technicaland copublished in the US with John Wiley, (1987). Google Scholar

[25]

T. C. Sideris, Nonlinear hyperbolic systems and elastodynamics,, Phase space analysis of partial differential equations, II (2004), 451. Google Scholar

[26]

T. C. Sideris and B. Thomases, Global existence for three-dimensional incompressible isotropic elastodynamics via the incompressible limit,, Comm. Pure Appl. Math., 58 (2005), 750. doi: 10.1002/cpa.20049. Google Scholar

[1]

Xiaoyun Cai, Liangwen Liao, Yongzhong Sun. Global strong solution to the initial-boundary value problem of a 2-D Kazhikhov-Smagulov type model. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 917-923. doi: 10.3934/dcdss.2014.7.917

[2]

Peng Jiang. Unique global solution of an initial-boundary value problem to a diffusion approximation model in radiation hydrodynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3015-3037. doi: 10.3934/dcds.2015.35.3015

[3]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[4]

Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (I) Existence and uniform boundedness. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 825-837. doi: 10.3934/dcdsb.2007.7.825

[5]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[6]

Martn P. Árciga Alejandre, Elena I. Kaikina. Mixed initial-boundary value problem for Ott-Sudan-Ostrovskiy equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (2) : 381-409. doi: 10.3934/dcds.2012.32.381

[7]

Michal Beneš. Mixed initial-boundary value problem for the three-dimensional Navier-Stokes equations in polyhedral domains. Conference Publications, 2011, 2011 (Special) : 135-144. doi: 10.3934/proc.2011.2011.135

[8]

Haifeng Hu, Kaijun Zhang. Analysis on the initial-boundary value problem of a full bipolar hydrodynamic model for semiconductors. Discrete & Continuous Dynamical Systems - B, 2014, 19 (6) : 1601-1626. doi: 10.3934/dcdsb.2014.19.1601

[9]

Tatsien Li, Libin Wang. Global classical solutions to a kind of mixed initial-boundary value problem for quasilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2005, 12 (1) : 59-78. doi: 10.3934/dcds.2005.12.59

[10]

Türker Özsarı, Nermin Yolcu. The initial-boundary value problem for the biharmonic Schrödinger equation on the half-line. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3285-3316. doi: 10.3934/cpaa.2019148

[11]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[12]

Linglong Du, Caixuan Ren. Pointwise wave behavior of the initial-boundary value problem for the nonlinear damped wave equation in $\mathbb{R}_{+}^{n} $. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3265-3280. doi: 10.3934/dcdsb.2018319

[13]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[14]

Ming Mei, Yau Shu Wong, Liping Liu. Phase transitions in a coupled viscoelastic system with periodic initial-boundary condition: (II) Convergence. Discrete & Continuous Dynamical Systems - B, 2007, 7 (4) : 839-857. doi: 10.3934/dcdsb.2007.7.839

[15]

W. Wei, Yin Li, Zheng-An Yao. Decay of the compressible viscoelastic flows. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1603-1624. doi: 10.3934/cpaa.2016004

[16]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[17]

V. A. Dougalis, D. E. Mitsotakis, J.-C. Saut. On initial-boundary value problems for a Boussinesq system of BBM-BBM type in a plane domain. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1191-1204. doi: 10.3934/dcds.2009.23.1191

[18]

Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046

[19]

Runzhang Xu, Mingyou Zhang, Shaohua Chen, Yanbing Yang, Jihong Shen. The initial-boundary value problems for a class of sixth order nonlinear wave equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5631-5649. doi: 10.3934/dcds.2017244

[20]

Zhenhua Guo, Zilai Li. Global existence of weak solution to the free boundary problem for compressible Navier-Stokes. Kinetic & Related Models, 2016, 9 (1) : 75-103. doi: 10.3934/krm.2016.9.75

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (25)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]