March  2015, 35(3): 857-870. doi: 10.3934/dcds.2015.35.857

Non ultracontractive heat kernel bounds by Lyapunov conditions

1. 

Ceremade, Umr Cnrs 7534, Université Paris-Dauphine, Place du Maréchal de Lattre de Tassigny, F-75775 Paris cedex 16, France

2. 

Institut Universitaire de France and Laboratoire de Mathématiques, Umr Cnrs 6620, Université Blaise Pascal, Avenue des Landais, F-63177 Aubière cedex, France

3. 

School of Mathematics and Statistics, Huazhong University of Science and Technology, Wuhan 430074, China

Received  November 2013 Revised  July 2014 Published  October 2014

Nash and Sobolev inequalities are known to be equivalent to ultracontractive properties of heat-like Markov semigroups, hence to uniform on-diagonal bounds on their kernel densities. In non ultracontractive settings, such bounds can not hold, and (necessarily weaker, non uniform) bounds on the semigroups can be derived by means of weighted Nash (or super-Poincaré) inequalities. The purpose of this note is to show how to check these weighted Nash inequalities in concrete examples of reversible diffusion Markov semigroups in $\mathbb{R}^d$, in a very simple and general manner. We also deduce off-diagonal bounds for the Markov kernels of the semigroups, refining E. B. Davies' original argument.
Citation: François Bolley, Arnaud Guillin, Xinyu Wang. Non ultracontractive heat kernel bounds by Lyapunov conditions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 857-870. doi: 10.3934/dcds.2015.35.857
References:
[1]

D. Bakry, F. Barthe, P. Cattiaux and A. Guillin, A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case,, Elec. Comm. Prob., 13 (2008), 60. doi: 10.1214/ECP.v13-1352. Google Scholar

[2]

D. Bakry, F. Bolley, I. Gentil and P. Maheux, Weighted Nash inequalities,, Revista Mat. Iberoam., 28 (2012), 879. doi: 10.4171/RMI/695. Google Scholar

[3]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators,, Grund. math. Wiss., (2014). doi: 10.1007/978-3-319-00227-9. Google Scholar

[4]

S. G. Bobkov and M. Ledoux, Weighted Poincaré-type inequalities for Cauchy and other convex measures,, Ann. Prob., 37 (2009), 403. doi: 10.1214/08-AOP407. Google Scholar

[5]

S. Boutayeb, T. Coulhon and A. Sikora, A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces,, Preprint, (2013). Google Scholar

[6]

E. A. Carlen, S. Kusuoka and D. W. Stroock, Upper bounds for symmetric Markov transition functions,, Ann. Inst. H. Poincaré Prob. Stat., 23 (1987), 245. Google Scholar

[7]

P. Cattiaux, N. Gozlan, A. Guillin and C. Roberto, Functional inequalities for heavy tailed distributions and application to isoperimetry,, Elec. J. Prob., 15 (2010), 346. doi: 10.1214/EJP.v15-754. Google Scholar

[8]

P. Cattiaux, A. Guillin, F.-Y. Wang and L. Wu, Lyapunov conditions for super Poincaré inequalities,, J. Funct. Anal., 256 (2009), 1821. doi: 10.1016/j.jfa.2009.01.003. Google Scholar

[9]

T. Coulhon, Ultracontractivity and Nash type inequalities,, J. Funct. Anal., 141 (1996), 510. doi: 10.1006/jfan.1996.0140. Google Scholar

[10]

T. Coulhon, Heat kernel estimates, Sobolev-type inequalities and Riesz transform on noncompact Riemannian manifolds,, In Analysis and geometry of metric measure spaces., 56 (2013), 55. Google Scholar

[11]

T. Coulhon and A. Sikora, Gaussian heat kernel bounds via Phragmèn-Lindelöf theorem,, Proc. London. Math. Soc., 96 (2008), 507. doi: 10.1112/plms/pdm050. Google Scholar

[12]

E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels,, Amer. J. Math., 109 (1987), 319. doi: 10.2307/2374577. Google Scholar

[13]

E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math., vol. 92., Cambridge Univ. Press, (1990). Google Scholar

[14]

O. Kavian, G. Kerkyacharian and B. Roynette, Quelques remarques sur l'ultracontractivité,, J. Funct. Anal., 111 (1993), 155. doi: 10.1006/jfan.1993.1008. Google Scholar

[15]

V. H. Nguyen, Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem,, J. Funct. Anal., 266 (2014), 931. doi: 10.1016/j.jfa.2013.11.003. Google Scholar

[16]

L. Saloff-Coste, Sobolev inequalities in familiar and unfamiliar settings,, In Sobolev spaces in mathematics. I, 8 (2009), 299. doi: 10.1007/978-0-387-85648-3_11. Google Scholar

[17]

F.-Y. Wang, Functional inequalities for empty essential spectrum,, J. Funct. Anal., 170 (2000), 219. doi: 10.1006/jfan.1999.3516. Google Scholar

[18]

F.-Y. Wang, Functional inequalities and spectrum estimates: The infinite measure case,, J. Funct. Anal., 194 (2002), 288. doi: 10.1006/jfan.2002.3968. Google Scholar

show all references

References:
[1]

D. Bakry, F. Barthe, P. Cattiaux and A. Guillin, A simple proof of the Poincaré inequality for a large class of probability measures including the log-concave case,, Elec. Comm. Prob., 13 (2008), 60. doi: 10.1214/ECP.v13-1352. Google Scholar

[2]

D. Bakry, F. Bolley, I. Gentil and P. Maheux, Weighted Nash inequalities,, Revista Mat. Iberoam., 28 (2012), 879. doi: 10.4171/RMI/695. Google Scholar

[3]

D. Bakry, I. Gentil and M. Ledoux, Analysis and Geometry of Markov Diffusion Operators,, Grund. math. Wiss., (2014). doi: 10.1007/978-3-319-00227-9. Google Scholar

[4]

S. G. Bobkov and M. Ledoux, Weighted Poincaré-type inequalities for Cauchy and other convex measures,, Ann. Prob., 37 (2009), 403. doi: 10.1214/08-AOP407. Google Scholar

[5]

S. Boutayeb, T. Coulhon and A. Sikora, A new approach to pointwise heat kernel upper bounds on doubling metric measure spaces,, Preprint, (2013). Google Scholar

[6]

E. A. Carlen, S. Kusuoka and D. W. Stroock, Upper bounds for symmetric Markov transition functions,, Ann. Inst. H. Poincaré Prob. Stat., 23 (1987), 245. Google Scholar

[7]

P. Cattiaux, N. Gozlan, A. Guillin and C. Roberto, Functional inequalities for heavy tailed distributions and application to isoperimetry,, Elec. J. Prob., 15 (2010), 346. doi: 10.1214/EJP.v15-754. Google Scholar

[8]

P. Cattiaux, A. Guillin, F.-Y. Wang and L. Wu, Lyapunov conditions for super Poincaré inequalities,, J. Funct. Anal., 256 (2009), 1821. doi: 10.1016/j.jfa.2009.01.003. Google Scholar

[9]

T. Coulhon, Ultracontractivity and Nash type inequalities,, J. Funct. Anal., 141 (1996), 510. doi: 10.1006/jfan.1996.0140. Google Scholar

[10]

T. Coulhon, Heat kernel estimates, Sobolev-type inequalities and Riesz transform on noncompact Riemannian manifolds,, In Analysis and geometry of metric measure spaces., 56 (2013), 55. Google Scholar

[11]

T. Coulhon and A. Sikora, Gaussian heat kernel bounds via Phragmèn-Lindelöf theorem,, Proc. London. Math. Soc., 96 (2008), 507. doi: 10.1112/plms/pdm050. Google Scholar

[12]

E. B. Davies, Explicit constants for Gaussian upper bounds on heat kernels,, Amer. J. Math., 109 (1987), 319. doi: 10.2307/2374577. Google Scholar

[13]

E. B. Davies, Heat Kernels and Spectral Theory, Cambridge Tracts in Math., vol. 92., Cambridge Univ. Press, (1990). Google Scholar

[14]

O. Kavian, G. Kerkyacharian and B. Roynette, Quelques remarques sur l'ultracontractivité,, J. Funct. Anal., 111 (1993), 155. doi: 10.1006/jfan.1993.1008. Google Scholar

[15]

V. H. Nguyen, Dimensional variance estimates of Brascamp-Lieb type and a local approach to dimensional Prékopa theorem,, J. Funct. Anal., 266 (2014), 931. doi: 10.1016/j.jfa.2013.11.003. Google Scholar

[16]

L. Saloff-Coste, Sobolev inequalities in familiar and unfamiliar settings,, In Sobolev spaces in mathematics. I, 8 (2009), 299. doi: 10.1007/978-0-387-85648-3_11. Google Scholar

[17]

F.-Y. Wang, Functional inequalities for empty essential spectrum,, J. Funct. Anal., 170 (2000), 219. doi: 10.1006/jfan.1999.3516. Google Scholar

[18]

F.-Y. Wang, Functional inequalities and spectrum estimates: The infinite measure case,, J. Funct. Anal., 194 (2002), 288. doi: 10.1006/jfan.2002.3968. Google Scholar

[1]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

[2]

Takeshi Fukao, Nobuyuki Kenmochi. Quasi-variational inequality approach to heat convection problems with temperature dependent velocity constraint. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2523-2538. doi: 10.3934/dcds.2015.35.2523

[3]

Jorge A. Becerril, Javier F. Rosenblueth. Necessity for isoperimetric inequality constraints. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1129-1158. doi: 10.3934/dcds.2017047

[4]

Gisella Croce, Bernard Dacorogna. On a generalized Wirtinger inequality. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1329-1341. doi: 10.3934/dcds.2003.9.1329

[5]

B. Fernandez, E. Ugalde, J. Urías. Spectrum of dimensions for Poincaré recurrences of Markov maps. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 835-849. doi: 10.3934/dcds.2002.8.835

[6]

YanYan Li, Tonia Ricciardi. A sharp Sobolev inequality on Riemannian manifolds. Communications on Pure & Applied Analysis, 2003, 2 (1) : 1-31. doi: 10.3934/cpaa.2003.2.1

[7]

Felipe Riquelme. Ruelle's inequality in negative curvature. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2809-2825. doi: 10.3934/dcds.2018119

[8]

Hubert L. Bray, Marcus A. Khuri. A Jang equation approach to the Penrose inequality. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 741-766. doi: 10.3934/dcds.2010.27.741

[9]

S. S. Dragomir, C. E. M. Pearce. Jensen's inequality for quasiconvex functions. Numerical Algebra, Control & Optimization, 2012, 2 (2) : 279-291. doi: 10.3934/naco.2012.2.279

[10]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[11]

Alexei Shadrin. The Landau--Kolmogorov inequality revisited. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1183-1210. doi: 10.3934/dcds.2014.34.1183

[12]

Igor E. Verbitsky. The Hessian Sobolev inequality and its extensions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6165-6179. doi: 10.3934/dcds.2015.35.6165

[13]

Alain Haraux. Some applications of the Łojasiewicz gradient inequality. Communications on Pure & Applied Analysis, 2012, 11 (6) : 2417-2427. doi: 10.3934/cpaa.2012.11.2417

[14]

Boumediene Abdellaoui, Fethi Mahmoudi. An improved Hardy inequality for a nonlocal operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1143-1157. doi: 10.3934/dcds.2016.36.1143

[15]

James Scott, Tadele Mengesha. A fractional Korn-type inequality. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3315-3343. doi: 10.3934/dcds.2019137

[16]

Vladimir E. Fedorov, Natalia D. Ivanova. Identification problem for a degenerate evolution equation with overdetermination on the solution semigroup kernel. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 687-696. doi: 10.3934/dcdss.2016022

[17]

Sandra Carillo, Vanda Valente, Giorgio Vergara Caffarelli. Heat conduction with memory: A singular kernel problem. Evolution Equations & Control Theory, 2014, 3 (3) : 399-410. doi: 10.3934/eect.2014.3.399

[18]

Cristina Brändle, Arturo De Pablo. Nonlocal heat equations: Regularizing effect, decay estimates and Nash inequalities. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1161-1178. doi: 10.3934/cpaa.2018056

[19]

Daniela De Silva, Ovidiu Savin. A note on higher regularity boundary Harnack inequality. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6155-6163. doi: 10.3934/dcds.2015.35.6155

[20]

Shu-Yu Hsu. Some results for the Perelman LYH-type inequality. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3535-3554. doi: 10.3934/dcds.2014.34.3535

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]