February  2015, 35(2): 771-792. doi: 10.3934/dcds.2015.35.771

Transitive dendrite map with infinite decomposition ideal

1. 

Department of Mathematics, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01 Banská Bystrica

Received  November 2013 Revised  April 2014 Published  September 2014

By a result of Blokh from 1984, every transitive map of a tree has the relative specification property, and so it has finite decomposition ideal, positive entropy and dense periodic points. In this paper we construct a transitive dendrite map with infinite decomposition ideal and a unique periodic point. Basically, the constructed map is (with respect to any non-atomic invariant measure) a measure-theoretic extension of the dyadic adding machine. Together with an example of Hoehn and Mouron from 2013, this shows that transitivity on dendrites is much more varied than that on trees.
Citation: Vladimír Špitalský. Transitive dendrite map with infinite decomposition ideal. Discrete & Continuous Dynamical Systems - A, 2015, 35 (2) : 771-792. doi: 10.3934/dcds.2015.35.771
References:
[1]

G. Acosta, R. Hernández-Gutiérrez, I. Naghmouchi and P. Oprocha, Periodic points and transitivity on dendrites,, preprint, (). Google Scholar

[2]

L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551. doi: 10.1090/S0002-9947-99-02077-2. Google Scholar

[3]

S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551. doi: 10.1016/S0040-9383(99)00074-9. Google Scholar

[4]

F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225. doi: 10.1016/S0166-8641(03)00090-7. Google Scholar

[5]

J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505. doi: 10.1017/S0143385797069885. Google Scholar

[6]

A. M. Blokh, On transitive mappings of one-dimensional branched manifolds (Russian),, Differential-difference equations and problems of mathematical physics (Russian), (1984), 3. Google Scholar

[7]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[8]

M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, 33 (2013), 1786. doi: 10.1017/S0143385712000442. Google Scholar

[9]

L. Hoehn and C. Mouron, Hierarchies of chaotic maps on continua,, Ergodic Theory Dynam. Systems, (2013), 1. doi: 10.1017/etds.2013.32. Google Scholar

[10]

K. Kuratowski, Topology. Vol. II,, Academic Press, (1968). Google Scholar

[11]

S. B. Nadler, Continuum Theory. An Introduction,, Monographs and Textbooks in Pure and Applied Mathematics, (1992). Google Scholar

[12]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982). Google Scholar

show all references

References:
[1]

G. Acosta, R. Hernández-Gutiérrez, I. Naghmouchi and P. Oprocha, Periodic points and transitivity on dendrites,, preprint, (). Google Scholar

[2]

L. Alsedà, S. Kolyada, J. Llibre and L'. Snoha, Entropy and periodic points for transitive maps,, Trans. Amer. Math. Soc., 351 (1999), 1551. doi: 10.1090/S0002-9947-99-02077-2. Google Scholar

[3]

S. Baldwin, Entropy estimates for transitive maps on trees,, Topology, 40 (2001), 551. doi: 10.1016/S0040-9383(99)00074-9. Google Scholar

[4]

F. Balibrea and L'. Snoha, Topological entropy of Devaney chaotic maps,, Topology Appl., 133 (2003), 225. doi: 10.1016/S0166-8641(03)00090-7. Google Scholar

[5]

J. Banks, Regular periodic decompositions for topologically transitive maps,, Ergodic Theory Dynam. Systems, 17 (1997), 505. doi: 10.1017/S0143385797069885. Google Scholar

[6]

A. M. Blokh, On transitive mappings of one-dimensional branched manifolds (Russian),, Differential-difference equations and problems of mathematical physics (Russian), (1984), 3. Google Scholar

[7]

R. Bowen, Entropy for group endomorphisms and homogeneous spaces,, Trans. Amer. Math. Soc., 153 (1971), 401. doi: 10.1090/S0002-9947-1971-0274707-X. Google Scholar

[8]

M. Dirbák, L'. Snoha and V. Špitalský, Minimality, transitivity, mixing and topological entropy on spaces with a free interval,, Ergodic Theory Dynam. Systems, 33 (2013), 1786. doi: 10.1017/S0143385712000442. Google Scholar

[9]

L. Hoehn and C. Mouron, Hierarchies of chaotic maps on continua,, Ergodic Theory Dynam. Systems, (2013), 1. doi: 10.1017/etds.2013.32. Google Scholar

[10]

K. Kuratowski, Topology. Vol. II,, Academic Press, (1968). Google Scholar

[11]

S. B. Nadler, Continuum Theory. An Introduction,, Monographs and Textbooks in Pure and Applied Mathematics, (1992). Google Scholar

[12]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982). Google Scholar

[1]

Ali Messaoudi, Rafael Asmat Uceda. Stochastic adding machine and $2$-dimensional Julia sets. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5247-5269. doi: 10.3934/dcds.2014.34.5247

[2]

Tomás Caraballo, Juan C. Jara, José A. Langa, José Valero. Morse decomposition of global attractors with infinite components. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2845-2861. doi: 10.3934/dcds.2015.35.2845

[3]

Jisang Yoo. Decomposition of infinite-to-one factor codes and uniqueness of relative equilibrium states. Journal of Modern Dynamics, 2018, 13: 271-284. doi: 10.3934/jmd.2018021

[4]

Edson Pindza, Francis Youbi, Eben Maré, Matt Davison. Barycentric spectral domain decomposition methods for valuing a class of infinite activity Lévy models. Discrete & Continuous Dynamical Systems - S, 2019, 12 (3) : 625-643. doi: 10.3934/dcdss.2019040

[5]

Danilo Antonio Caprio. A class of adding machines and Julia sets. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5951-5970. doi: 10.3934/dcds.2016061

[6]

Lori Alvin. Toeplitz kneading sequences and adding machines. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3277-3287. doi: 10.3934/dcds.2013.33.3277

[7]

Sergiĭ Kolyada, Mykola Matviichuk. On extensions of transitive maps. Discrete & Continuous Dynamical Systems - A, 2011, 30 (3) : 767-777. doi: 10.3934/dcds.2011.30.767

[8]

John Banks, Piotr Oprocha, Brett Stanley. Transitive sofic spacing shifts. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4743-4764. doi: 10.3934/dcds.2015.35.4743

[9]

Simon Castle, Norbert Peyerimhoff, Karl Friedrich Siburg. Billiards in ideal hyperbolic polygons. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 893-908. doi: 10.3934/dcds.2011.29.893

[10]

Irene Márquez-Corbella, Edgar Martínez-Moro, Emilio Suárez-Canedo. On the ideal associated to a linear code. Advances in Mathematics of Communications, 2016, 10 (2) : 229-254. doi: 10.3934/amc.2016003

[11]

King-Yeung Lam, Daniel Munther. Invading the ideal free distribution. Discrete & Continuous Dynamical Systems - B, 2014, 19 (10) : 3219-3244. doi: 10.3934/dcdsb.2014.19.3219

[12]

Piotr Oprocha. Specification properties and dense distributional chaos. Discrete & Continuous Dynamical Systems - A, 2007, 17 (4) : 821-833. doi: 10.3934/dcds.2007.17.821

[13]

Mrinal Kanti Roychowdhury, Daniel J. Rudolph. Nearly continuous Kakutani equivalence of adding machines. Journal of Modern Dynamics, 2009, 3 (1) : 103-119. doi: 10.3934/jmd.2009.3.103

[14]

Grant Cairns, Barry Jessup, Marcel Nicolau. Topologically transitive homeomorphisms of quotients of tori. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 291-300. doi: 10.3934/dcds.1999.5.291

[15]

Salvador Addas-Zanata, Fábio A. Tal. Homeomorphisms of the annulus with a transitive lift II. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 651-668. doi: 10.3934/dcds.2011.31.651

[16]

Shengzhi Zhu, Shaobo Gan, Lan Wen. Indices of singularities of robustly transitive sets. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 945-957. doi: 10.3934/dcds.2008.21.945

[17]

Carlos Gutierrez, Simon Lloyd, Vladislav Medvedev, Benito Pires, Evgeny Zhuzhoma. Transitive circle exchange transformations with flips. Discrete & Continuous Dynamical Systems - A, 2010, 26 (1) : 251-263. doi: 10.3934/dcds.2010.26.251

[18]

Amer Rasheed, Aziz Belmiloudi, Fabrice Mahé. Dynamics of dendrite growth in a binary alloy with magnetic field effect. Conference Publications, 2011, 2011 (Special) : 1224-1233. doi: 10.3934/proc.2011.2011.1224

[19]

Robert Stephen Cantrell, Chris Cosner, Yuan Lou. Evolution of dispersal and the ideal free distribution. Mathematical Biosciences & Engineering, 2010, 7 (1) : 17-36. doi: 10.3934/mbe.2010.7.17

[20]

Michihiro Hirayama. Periodic probability measures are dense in the set of invariant measures. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1185-1192. doi: 10.3934/dcds.2003.9.1185

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (3)

Other articles
by authors

[Back to Top]