December  2015, 35(12): 6133-6153. doi: 10.3934/dcds.2015.35.6133

Complexity and regularity of maximal energy domains for the wave equation with fixed initial data

1. 

CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris, France

2. 

Université Pierre et Marie Curie (Univ. Paris 6) and Institut Universitaire de France and Team GECO Inria Saclay, CNRS UMR 7598, Laboratoire Jacques-Louis Lions, F-75005, Paris

3. 

BCAM - Basque Center for Applied Mathematics, Mazarredo, 14, E-48009 Bilbao-Basque Country

Received  September 2013 Revised  January 2014 Published  May 2015

We consider the homogeneous wave equation on a bounded open connected subset $\Omega$ of $\mathbb{R}^n$. Some initial data being specified, we consider the problem of determining a measurable subset $\omega$ of $\Omega$ maximizing the $L^2$-norm of the restriction of the corresponding solution to $\omega$ over a time interval $[0,T]$, over all possible subsets of $\Omega$ having a certain prescribed measure. We prove that this problem always has at least one solution and that, if the initial data satisfy some analyticity assumptions, then the optimal set is unique and moreover has a finite number of connected components. In contrast, we construct smooth but not analytic initial conditions for which the optimal set is of Cantor type and in particular has an infinite number of connected components.
Citation: Yannick Privat, Emmanuel Trélat, Enrique Zuazua. Complexity and regularity of maximal energy domains for the wave equation with fixed initial data. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 6133-6153. doi: 10.3934/dcds.2015.35.6133
References:
[1]

R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975). Google Scholar

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[3]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation],, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749. doi: 10.1016/S0764-4442(97)80053-5. Google Scholar

[4]

R. M. Hardt, Stratification of real analytic mappings and images,, Invent. Math., 28 (1975), 193. doi: 10.1007/BF01436073. Google Scholar

[5]

P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators,, SIAM J. Control Optim., 44 (2005), 349. doi: 10.1137/S0363012903436247. Google Scholar

[6]

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators,, Frontiers in Mathematics, (2006). Google Scholar

[7]

A. Henrot and M. Pierre, Variation et Optimisation de Formes (French) [Shape Variation and Optimization] Une Analyse Géométrique [A Geometric Analysis],, Math. & Appl., (2005). doi: 10.1007/3-540-37689-5. Google Scholar

[8]

H. Hironaka, Subanalytic sets,, in Number Theory, (1973), 453. Google Scholar

[9]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE,, Lecture Notes in Math., (1150). Google Scholar

[10]

C. S. Kubrusly and H. Malebranche, Sensors and controllers location in distributed systems - a survey,, Automatica, 21 (1985), 117. doi: 10.1016/0005-1098(85)90107-4. Google Scholar

[11]

S. Kumar and J. H. Seinfeld, Optimal location of measurements for distributed parameter estimation,, IEEE Trans. Autom. Contr., 23 (1978), 690. doi: 10.1109/TAC.1978.1101803. Google Scholar

[12]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], (1988). Google Scholar

[13]

K. Morris, Linear-quadratic optimal actuator location,, IEEE Trans. Automat. Control, 56 (2011), 113. doi: 10.1109/TAC.2010.2052151. Google Scholar

[14]

A. Münch, Optimal location of the support of the control for the 1-D wave equation: numerical investigations,, Comput. Optim. Appl., 42 (2009), 443. doi: 10.1007/s10589-007-9133-x. Google Scholar

[15]

E. Nelson, Analytic vectors,, Ann. Math., 70 (1959), 572. doi: 10.2307/1970331. Google Scholar

[16]

F. Periago, Optimal shape and position of the support for the internal exact control of a string,, Syst. Cont. Letters, 58 (2009), 136. doi: 10.1016/j.sysconle.2008.08.007. Google Scholar

[17]

Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514. doi: 10.1007/s00041-013-9267-4. Google Scholar

[18]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains,, to appear in J. Europ. Math. Soc. (JEMS), (2013). Google Scholar

[19]

Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097. doi: 10.1016/j.anihpc.2012.11.005. Google Scholar

[20]

Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data,, Arch. Ration. Mech. Anal., 216 (2015), 921. doi: 10.1007/s00205-014-0823-0. Google Scholar

[21]

J.-M. Rakotoson, Réarrangement Relatif,, Math. & Appl. (Berlin) [Mathematics & Applications], (2008). doi: 10.1007/978-3-540-69118-1. Google Scholar

[22]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009). doi: 10.1007/978-3-7643-8994-9. Google Scholar

[23]

D. Ucinski and M. Patan, Sensor network design fo the estimation of spatially distributed processes,, Int. J. Appl. Math. Comput. Sci., 20 (2010), 459. doi: 10.2478/v10006-010-0034-2. Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975). Google Scholar

[2]

C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary,, SIAM J. Control Optim., 30 (1992), 1024. doi: 10.1137/0330055. Google Scholar

[3]

N. Burq and P. Gérard, Condition nécessaire et suffisante pour la contrôlabilité exacte des ondes (French) [A necessary and sufficient condition for the exact controllability of the wave equation],, C. R. Acad. Sci. Paris Sér. I Math., 325 (1997), 749. doi: 10.1016/S0764-4442(97)80053-5. Google Scholar

[4]

R. M. Hardt, Stratification of real analytic mappings and images,, Invent. Math., 28 (1975), 193. doi: 10.1007/BF01436073. Google Scholar

[5]

P. Hébrard and A. Henrot, A spillover phenomenon in the optimal location of actuators,, SIAM J. Control Optim., 44 (2005), 349. doi: 10.1137/S0363012903436247. Google Scholar

[6]

A. Henrot, Extremum Problems for Eigenvalues of Elliptic Operators,, Frontiers in Mathematics, (2006). Google Scholar

[7]

A. Henrot and M. Pierre, Variation et Optimisation de Formes (French) [Shape Variation and Optimization] Une Analyse Géométrique [A Geometric Analysis],, Math. & Appl., (2005). doi: 10.1007/3-540-37689-5. Google Scholar

[8]

H. Hironaka, Subanalytic sets,, in Number Theory, (1973), 453. Google Scholar

[9]

B. Kawohl, Rearrangements and Convexity of Level Sets in PDE,, Lecture Notes in Math., (1150). Google Scholar

[10]

C. S. Kubrusly and H. Malebranche, Sensors and controllers location in distributed systems - a survey,, Automatica, 21 (1985), 117. doi: 10.1016/0005-1098(85)90107-4. Google Scholar

[11]

S. Kumar and J. H. Seinfeld, Optimal location of measurements for distributed parameter estimation,, IEEE Trans. Autom. Contr., 23 (1978), 690. doi: 10.1109/TAC.1978.1101803. Google Scholar

[12]

J.-L. Lions, Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués, Tome 1,, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], (1988). Google Scholar

[13]

K. Morris, Linear-quadratic optimal actuator location,, IEEE Trans. Automat. Control, 56 (2011), 113. doi: 10.1109/TAC.2010.2052151. Google Scholar

[14]

A. Münch, Optimal location of the support of the control for the 1-D wave equation: numerical investigations,, Comput. Optim. Appl., 42 (2009), 443. doi: 10.1007/s10589-007-9133-x. Google Scholar

[15]

E. Nelson, Analytic vectors,, Ann. Math., 70 (1959), 572. doi: 10.2307/1970331. Google Scholar

[16]

F. Periago, Optimal shape and position of the support for the internal exact control of a string,, Syst. Cont. Letters, 58 (2009), 136. doi: 10.1016/j.sysconle.2008.08.007. Google Scholar

[17]

Y. Privat, E. Trélat and E. Zuazua, Optimal observation of the one-dimensional wave equation,, J. Fourier Anal. Appl., 19 (2013), 514. doi: 10.1007/s00041-013-9267-4. Google Scholar

[18]

Y. Privat, E. Trélat and E. Zuazua, Optimal observability of the multi-dimensional wave and Schrödinger equations in quantum ergodic domains,, to appear in J. Europ. Math. Soc. (JEMS), (2013). Google Scholar

[19]

Y. Privat, E. Trélat and E. Zuazua, Optimal location of controllers for the one-dimensional wave equation,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30 (2013), 1097. doi: 10.1016/j.anihpc.2012.11.005. Google Scholar

[20]

Y. Privat, E. Trélat and E. Zuazua, Optimal shape and location of sensors for parabolic equations with random initial data,, Arch. Ration. Mech. Anal., 216 (2015), 921. doi: 10.1007/s00205-014-0823-0. Google Scholar

[21]

J.-M. Rakotoson, Réarrangement Relatif,, Math. & Appl. (Berlin) [Mathematics & Applications], (2008). doi: 10.1007/978-3-540-69118-1. Google Scholar

[22]

M. Tucsnak and G. Weiss, Observation and Control for Operator Semigroups,, Birkhäuser Advanced Texts: Basler Lehrbücher, (2009). doi: 10.1007/978-3-7643-8994-9. Google Scholar

[23]

D. Ucinski and M. Patan, Sensor network design fo the estimation of spatially distributed processes,, Int. J. Appl. Math. Comput. Sci., 20 (2010), 459. doi: 10.2478/v10006-010-0034-2. Google Scholar

[1]

Bernard Dacorogna, Giovanni Pisante, Ana Margarida Ribeiro. On non quasiconvex problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 961-983. doi: 10.3934/dcds.2005.13.961

[2]

Daniel Faraco, Jan Kristensen. Compactness versus regularity in the calculus of variations. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 473-485. doi: 10.3934/dcdsb.2012.17.473

[3]

Hans Josef Pesch. Carathéodory's royal road of the calculus of variations: Missed exits to the maximum principle of optimal control theory. Numerical Algebra, Control & Optimization, 2013, 3 (1) : 161-173. doi: 10.3934/naco.2013.3.161

[4]

G. Gentile, V. Mastropietro. Convergence of Lindstedt series for the non linear wave equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 509-514. doi: 10.3934/cpaa.2004.3.509

[5]

Ivar Ekeland. From Frank Ramsey to René Thom: A classical problem in the calculus of variations leading to an implicit differential equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1101-1119. doi: 10.3934/dcds.2010.28.1101

[6]

James W. Cannon, Mark H. Meilstrup, Andreas Zastrow. The period set of a map from the Cantor set to itself. Discrete & Continuous Dynamical Systems - A, 2013, 33 (7) : 2667-2679. doi: 10.3934/dcds.2013.33.2667

[7]

Hakima Bessaih, Yalchin Efendiev, Florin Maris. Homogenization of the evolution Stokes equation in a perforated domain with a stochastic Fourier boundary condition. Networks & Heterogeneous Media, 2015, 10 (2) : 343-367. doi: 10.3934/nhm.2015.10.343

[8]

Felix Sadyrbaev. Nonlinear boundary value problems of the calculus of variations. Conference Publications, 2003, 2003 (Special) : 760-770. doi: 10.3934/proc.2003.2003.760

[9]

Kim Dang Phung. Boundary stabilization for the wave equation in a bounded cylindrical domain. Discrete & Continuous Dynamical Systems - A, 2008, 20 (4) : 1057-1093. doi: 10.3934/dcds.2008.20.1057

[10]

Kazuhiro Ishige, Michinori Ishiwata. Global solutions for a semilinear heat equation in the exterior domain of a compact set. Discrete & Continuous Dynamical Systems - A, 2012, 32 (3) : 847-865. doi: 10.3934/dcds.2012.32.847

[11]

Agnieszka B. Malinowska, Delfim F. M. Torres. Euler-Lagrange equations for composition functionals in calculus of variations on time scales. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 577-593. doi: 10.3934/dcds.2011.29.577

[12]

Delfim F. M. Torres. Proper extensions of Noether's symmetry theorem for nonsmooth extremals of the calculus of variations. Communications on Pure & Applied Analysis, 2004, 3 (3) : 491-500. doi: 10.3934/cpaa.2004.3.491

[13]

Nuno R. O. Bastos, Rui A. C. Ferreira, Delfim F. M. Torres. Necessary optimality conditions for fractional difference problems of the calculus of variations. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 417-437. doi: 10.3934/dcds.2011.29.417

[14]

Michel Potier-Ferry, Foudil Mohri, Fan Xu, Noureddine Damil, Bouazza Braikat, Khadija Mhada, Heng Hu, Qun Huang, Saeid Nezamabadi. Cellular instabilities analyzed by multi-scale Fourier series: A review. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 585-597. doi: 10.3934/dcdss.2016013

[15]

Moez Daoulatli. Energy decay rates for solutions of the wave equation with linear damping in exterior domain. Evolution Equations & Control Theory, 2016, 5 (1) : 37-59. doi: 10.3934/eect.2016.5.37

[16]

Laurent Bourgeois, Dmitry Ponomarev, Jérémi Dardé. An inverse obstacle problem for the wave equation in a finite time domain. Inverse Problems & Imaging, 2019, 13 (2) : 377-400. doi: 10.3934/ipi.2019019

[17]

Yannick Privat, Emmanuel Trélat. Optimal design of sensors for a damped wave equation. Conference Publications, 2015, 2015 (special) : 936-944. doi: 10.3934/proc.2015.0936

[18]

Nikos Katzourakis. Nonuniqueness in vector-valued calculus of variations in $L^\infty$ and some Linear elliptic systems. Communications on Pure & Applied Analysis, 2015, 14 (1) : 313-327. doi: 10.3934/cpaa.2015.14.313

[19]

Gisella Croce, Nikos Katzourakis, Giovanni Pisante. $\mathcal{D}$-solutions to the system of vectorial Calculus of Variations in $L^∞$ via the singular value problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6165-6181. doi: 10.3934/dcds.2017266

[20]

Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (8)

[Back to Top]