December  2015, 35(12): 5869-5877. doi: 10.3934/dcds.2015.35.5869

Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems

1. 

LAMFA, CNRS UMR 7352, Université de Picardie Jules Verne, 33 rue Saint-Leu, 80039 Amiens

Received  December 2013 Published  May 2015

We prove the symmetry of components and some Liouville-type theorems for, possibly sign changing, entire distributional solutions to a family of nonlinear elliptic systems encompassing models arising in Bose-Einstein condensation and in nonlinear optics. For these models we also provide precise classification results for non-negative solutions. The sharpness of our results is also discussed.
Citation: Alberto Farina. Symmetry of components, Liouville-type theorems and classification results for some nonlinear elliptic systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5869-5877. doi: 10.3934/dcds.2015.35.5869
References:
[1]

G. Bianchi, Non-existence of positive solutions to semilinear equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes,, Comm. Partial Diff. Eqns., 22 (1997), 1671. doi: 10.1080/03605309708821315.

[2]

H. Brezis, Semilinear equations in $R^N$ without condition at infinity,, Appl. Math. Optim., 12 (1984), 271. doi: 10.1007/BF01449045.

[3]

L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271. doi: 10.1002/cpa.3160420304.

[4]

C. Cortàzar, M. Elgueta and P. Felmer, On a semilinear elliptic problem in $\mathbbR^N$ with a non-Lipschitzian non-linearity,, Advances in Differential Equations, 1 (1996), 199.

[5]

E. N. Dancer and Y. Du, Some remarks on Liouville type results for quasilinear elliptic equations,, Proc. Amer. Math. Soc., 131 (2003), 1891. doi: 10.1090/S0002-9939-02-06733-3.

[6]

A. Farina, Liouville-type theorems for elliptic problems,, in Handbook of Differential Equations, (2007), 61. doi: 10.1016/S1874-5733(07)80005-2.

[7]

D. J. Frantzeskakis, Dark solitons in atomic Bose-Einstein condensates: From theory to experiments,, J. Phys. A, 43 (2010). doi: 10.1088/1751-8113/43/21/213001.

[8]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, Adv. Math. Supp. Stud., 7a (1981), 369.

[9]

F. Gazzola, J. Serrin and M. Tang, Existence of ground states and free boundary problems for quasilinear elliptic operators,, Advances in Differential Equations, 5 (2000), 1.

[10]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 6 (1981), 883. doi: 10.1080/03605308108820196.

[11]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406.

[12]

T. Kato, Schrödinger operators with singular potentials,, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 13 (1972), 135. doi: 10.1007/BF02760233.

[13]

J. B. Keller, On solutions of $ \Delta u = f (u)$,, Comm. Pure Appl. Math., 10 (1957), 503. doi: 10.1002/cpa.3160100402.

[14]

Yu. S. Kivshar and B. Luther-Davies, Dark optical solitons: Physics and applications,, Phys. Rep., 298 (1998), 81. doi: 10.1016/S0370-1573(97)00073-2.

[15]

T.-C. Lin and J.-C. Wei, Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations,, Nonlinearity, 19 (2006), 2755. doi: 10.1088/0951-7715/19/12/002.

[16]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, J. Differential Equations, 245 (2008), 2551. doi: 10.1016/j.jde.2008.04.008.

[17]

E. Mitidieri and S. I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities,, Proc. Steklov Inst. Math., 234 (2001), 1.

[18]

R. Osserman, On the inequality $\Delta u \ge f(u)$,, Pacific J. Math., 7 (1957), 1641.

[19]

V. M. Perez-Garcia and J. B. Beitia, Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates,, Phys. Rev. A, 72 (2005). doi: 10.1103/PhysRevA.72.033620.

[20]

P. Pucci and J. Serrin, Uniqueness of ground states for quasilinear elliptic operators,, Indiana Univ. Math. J., 47 (1998), 501. doi: 10.1512/iumj.1998.47.1517.

[21]

P. Quittner and P. Souplet, Symmetry of components for semilinear elliptic systems,, SIAM J. Math. Anal., 44 (2012), 2545. doi: 10.1137/11085428X.

[22]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897. doi: 10.1512/iumj.2000.49.1893.

[23]

J. Serrin and H. Zou, Symmetry of ground states of quasilinear elliptic equations,, Arch. Rational Mech. Anal., 148 (1999), 265. doi: 10.1007/s002050050162.

show all references

References:
[1]

G. Bianchi, Non-existence of positive solutions to semilinear equations on $\mathbbR^n$ or $\mathbbR^n_+$ through the method of moving planes,, Comm. Partial Diff. Eqns., 22 (1997), 1671. doi: 10.1080/03605309708821315.

[2]

H. Brezis, Semilinear equations in $R^N$ without condition at infinity,, Appl. Math. Optim., 12 (1984), 271. doi: 10.1007/BF01449045.

[3]

L. A. Caffarelli, B. Gidas and J. Spruck, Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth,, Comm. Pure Appl. Math., 42 (1989), 271. doi: 10.1002/cpa.3160420304.

[4]

C. Cortàzar, M. Elgueta and P. Felmer, On a semilinear elliptic problem in $\mathbbR^N$ with a non-Lipschitzian non-linearity,, Advances in Differential Equations, 1 (1996), 199.

[5]

E. N. Dancer and Y. Du, Some remarks on Liouville type results for quasilinear elliptic equations,, Proc. Amer. Math. Soc., 131 (2003), 1891. doi: 10.1090/S0002-9939-02-06733-3.

[6]

A. Farina, Liouville-type theorems for elliptic problems,, in Handbook of Differential Equations, (2007), 61. doi: 10.1016/S1874-5733(07)80005-2.

[7]

D. J. Frantzeskakis, Dark solitons in atomic Bose-Einstein condensates: From theory to experiments,, J. Phys. A, 43 (2010). doi: 10.1088/1751-8113/43/21/213001.

[8]

B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in $R^n$,, Adv. Math. Supp. Stud., 7a (1981), 369.

[9]

F. Gazzola, J. Serrin and M. Tang, Existence of ground states and free boundary problems for quasilinear elliptic operators,, Advances in Differential Equations, 5 (2000), 1.

[10]

B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations,, Comm. Partial Differential Equations, 6 (1981), 883. doi: 10.1080/03605308108820196.

[11]

B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406.

[12]

T. Kato, Schrödinger operators with singular potentials,, Proceedings of the International Symposium on Partial Differential Equations and the Geometry of Normed Linear Spaces (Jerusalem, 13 (1972), 135. doi: 10.1007/BF02760233.

[13]

J. B. Keller, On solutions of $ \Delta u = f (u)$,, Comm. Pure Appl. Math., 10 (1957), 503. doi: 10.1002/cpa.3160100402.

[14]

Yu. S. Kivshar and B. Luther-Davies, Dark optical solitons: Physics and applications,, Phys. Rep., 298 (1998), 81. doi: 10.1016/S0370-1573(97)00073-2.

[15]

T.-C. Lin and J.-C. Wei, Symbiotic bright solitary wave solutions of coupled nonlinear Schrödinger equations,, Nonlinearity, 19 (2006), 2755. doi: 10.1088/0951-7715/19/12/002.

[16]

L. Ma and L. Zhao, Uniqueness of ground states of some coupled nonlinear Schrödinger systems and their application,, J. Differential Equations, 245 (2008), 2551. doi: 10.1016/j.jde.2008.04.008.

[17]

E. Mitidieri and S. I. Pohozaev, A priori estimates and blow-up of solutions of nonlinear partial differential equations and inequalities,, Proc. Steklov Inst. Math., 234 (2001), 1.

[18]

R. Osserman, On the inequality $\Delta u \ge f(u)$,, Pacific J. Math., 7 (1957), 1641.

[19]

V. M. Perez-Garcia and J. B. Beitia, Symbiotic solitons in heteronuclear multicomponent Bose-Einstein condensates,, Phys. Rev. A, 72 (2005). doi: 10.1103/PhysRevA.72.033620.

[20]

P. Pucci and J. Serrin, Uniqueness of ground states for quasilinear elliptic operators,, Indiana Univ. Math. J., 47 (1998), 501. doi: 10.1512/iumj.1998.47.1517.

[21]

P. Quittner and P. Souplet, Symmetry of components for semilinear elliptic systems,, SIAM J. Math. Anal., 44 (2012), 2545. doi: 10.1137/11085428X.

[22]

J. Serrin and M. Tang, Uniqueness of ground states for quasilinear elliptic equations,, Indiana Univ. Math. J., 49 (2000), 897. doi: 10.1512/iumj.2000.49.1893.

[23]

J. Serrin and H. Zou, Symmetry of ground states of quasilinear elliptic equations,, Arch. Rational Mech. Anal., 148 (1999), 265. doi: 10.1007/s002050050162.

[1]

Serena Dipierro. Geometric inequalities and symmetry results for elliptic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3473-3496. doi: 10.3934/dcds.2013.33.3473

[2]

Jean Dolbeault, Maria J. Esteban, Gaspard Jankowiak. Onofri inequalities and rigidity results. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3059-3078. doi: 10.3934/dcds.2017131

[3]

Toshiko Ogiwara, Hiroshi Matano. Monotonicity and convergence results in order-preserving systems in the presence of symmetry. Discrete & Continuous Dynamical Systems - A, 1999, 5 (1) : 1-34. doi: 10.3934/dcds.1999.5.1

[4]

Bassam Fayad, Raphaël Krikorian. Rigidity results for quasiperiodic SL(2, R)-cocycles. Journal of Modern Dynamics, 2009, 3 (4) : 479-510. doi: 10.3934/jmd.2009.3.479

[5]

Shuhong Chen, Zhong Tan. Optimal partial regularity results for nonlinear elliptic systems in Carnot groups. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3391-3405. doi: 10.3934/dcds.2013.33.3391

[6]

Zhenjie Li, Ze Cheng, Dongsheng Li. The Liouville type theorem and local regularity results for nonlinear differential and integral systems. Communications on Pure & Applied Analysis, 2015, 14 (2) : 565-576. doi: 10.3934/cpaa.2015.14.565

[7]

Kanishka Perera, Marco Squassina. On symmetry results for elliptic equations with convex nonlinearities. Communications on Pure & Applied Analysis, 2013, 12 (6) : 3013-3026. doi: 10.3934/cpaa.2013.12.3013

[8]

Luis F. López, Yannick Sire. Rigidity results for nonlocal phase transitions in the Heisenberg group $\mathbb{H}$. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2639-2656. doi: 10.3934/dcds.2014.34.2639

[9]

Bernhard Kawohl. Symmetry results for functions yielding best constants in Sobolev-type inequalities. Discrete & Continuous Dynamical Systems - A, 2000, 6 (3) : 683-690. doi: 10.3934/dcds.2000.6.683

[10]

Alberto Farina. Some symmetry results for entire solutions of an elliptic system arising in phase separation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2505-2511. doi: 10.3934/dcds.2014.34.2505

[11]

Annie Raoult. Symmetry groups in nonlinear elasticity: an exercise in vintage mathematics. Communications on Pure & Applied Analysis, 2009, 8 (1) : 435-456. doi: 10.3934/cpaa.2009.8.435

[12]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[13]

Sebastian Hage-Packhäuser, Michael Dellnitz. Stabilization via symmetry switching in hybrid dynamical systems. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 239-263. doi: 10.3934/dcdsb.2011.16.239

[14]

Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 1053-1070. doi: 10.3934/cpaa.2018051

[15]

E. García-Toraño Andrés, Bavo Langerock, Frans Cantrijn. Aspects of reduction and transformation of Lagrangian systems with symmetry. Journal of Geometric Mechanics, 2014, 6 (1) : 1-23. doi: 10.3934/jgm.2014.6.1

[16]

Dmitry V. Zenkov. Linear conservation laws of nonholonomic systems with symmetry. Conference Publications, 2003, 2003 (Special) : 967-976. doi: 10.3934/proc.2003.2003.967

[17]

J. Földes, Peter Poláčik. On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 133-157. doi: 10.3934/dcds.2009.25.133

[18]

Zhigang Wu, Hao Xu. Symmetry properties in systems of fractional Laplacian equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1559-1571. doi: 10.3934/dcds.2019068

[19]

Stefano Biagi, Enrico Valdinoci, Eugenio Vecchi. A symmetry result for elliptic systems in punctured domains. Communications on Pure & Applied Analysis, 2019, 18 (5) : 2819-2833. doi: 10.3934/cpaa.2019126

[20]

Xiaotao Huang, Lihe Wang. Radial symmetry results for Bessel potential integral equations in exterior domains and in annular domains. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1121-1134. doi: 10.3934/cpaa.2017054

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]