December  2015, 35(12): 5711-5723. doi: 10.3934/dcds.2015.35.5711

Eventual regularity for the parabolic minimal surface equation

1. 

Dipartimento di Matematica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy

2. 

Dipartimento di Matematica, Universitá di Pisa, Largo Bruno Pontecorvo 5, I-56127 Pisa

3. 

Dipartimento di Informatica, Università di Verona, Strada le Grazie 15, 37134 Verona, Italy

Received  January 2014 Published  May 2015

We show that the parabolic minimal surface equation has an eventual regularization effect, that is, the solution becomes smooth after a strictly positive finite time.
Citation: Giovanni Bellettini, Matteo Novaga, Giandomenico Orlandi. Eventual regularity for the parabolic minimal surface equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5711-5723. doi: 10.3934/dcds.2015.35.5711
References:
[1]

L. Ambrosio, Corso Introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime,, Edizioni della Scuola Normale, (1997). Google Scholar

[2]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[3]

F. Andreu, V. Caselles, J. I. Díaz and J. M. Mazón, Some qualitative properties for the total variation flow,, J. Funct. Anal., 188 (2002), 516. doi: 10.1006/jfan.2001.3829. Google Scholar

[4]

F. Andreu, V. Caselles and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,, Oxford Mathematical Monographs, (2004). doi: 10.1007/978-3-0348-7928-6. Google Scholar

[5]

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,, Ann. Mat. Pura Appl., 135 (1983), 293. doi: 10.1007/BF01781073. Google Scholar

[6]

G. Bellettini, Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations,, Edizioni della Scuola Normale, (2013). doi: 10.1007/978-88-7642-429-8. Google Scholar

[7]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in $\mathbbR^N$,, J. Differential Equations, 184 (2002), 475. doi: 10.1006/jdeq.2001.4150. Google Scholar

[8]

G. Bellettini, V. Caselles and M. Novaga, Explicit solutions of the eigenvalue problem -div$(\frac{Du}{|Du|}) = u$,, SIAM J. Math. Anal., 36 (2005), 1095. doi: 10.1137/S0036141003430007. Google Scholar

[9]

K. A. Brakke, The Motion of a Surface by its Mean Curvature,, Math. Notes, (1978). Google Scholar

[10]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland, (1973). Google Scholar

[11]

J. Buckland, Mean curvature flow with free boundary on smooth hypersurfaces,, J. Reine Angew. Math., 586 (2005), 71. doi: 10.1515/crll.2005.2005.586.71. Google Scholar

[12]

V. Caselles, A. Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions,, Multiscale Model. Simul., 6 (2007), 879. doi: 10.1137/070683003. Google Scholar

[13]

V. Caselles, A. Chambolle and M. Novaga, Total variation in imaging,, in Handbook of Mathematical Methods in Imaging, (2011), 1016. doi: 10.1007/978-0-387-92920-0_23. Google Scholar

[14]

A. Cesaroni and M. Novaga, Long-time behavior of the mean curvature flow with periodic forcing,, Comm. Partial Differential Equations, 38 (2013), 780. doi: 10.1080/03605302.2013.771508. Google Scholar

[15]

A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An introduction to total variation for image analysis,, in Theoretical Foundations and Numerical Methods for Sparse Recovery, (2010), 263. doi: 10.1515/9783110226157.263. Google Scholar

[16]

K. Ecker, Estimates for evolutionary surfaces of prescribed mean curvature,, Math. Z., 180 (1982), 179. doi: 10.1007/BF01318902. Google Scholar

[17]

K. Ecker and G. Huisken, Mean curvature evolution of entire graphs,, Ann. of Math., 130 (1989), 453. doi: 10.2307/1971452. Google Scholar

[18]

K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature,, Invent. Math., 105 (1991), 547. doi: 10.1007/BF01232278. Google Scholar

[19]

M. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geom., 23 (1986), 69. Google Scholar

[20]

C. Gerhardt, Evolutionary surfaces of prescribed mean curvature,, J. Differential Equations, 36 (1980), 139. doi: 10.1016/0022-0396(80)90081-9. Google Scholar

[21]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Monographs in Mathematics, (1984). doi: 10.1007/978-1-4684-9486-0. Google Scholar

[22]

A. Lichnewski and R. Temam, Pseudosolutions of the time-dependent minimal surface problem,, J. Differential Equations, 30 (1978), 340. doi: 10.1016/0022-0396(78)90005-0. Google Scholar

[23]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995). doi: 10.1007/978-3-0348-9234-6. Google Scholar

[24]

U. Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in $\mathbbR^n$,, Arch. Ration. Mech. Anal., 55 (1974), 357. Google Scholar

[25]

I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal argorithms,, Physica D, 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F. Google Scholar

[26]

A. Stahl, Regularity estimates for solutions to the mean curvature flow with a Neumann boundary condition,, Calc. Var. Partial Differential Equations, 4 (1996), 385. doi: 10.1007/BF01190825. Google Scholar

[27]

I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector,, J. Reine Angew. Math., 334 (1982), 27. doi: 10.1515/crll.1982.334.27. Google Scholar

show all references

References:
[1]

L. Ambrosio, Corso Introduttivo alla Teoria Geometrica della Misura ed alle Superfici Minime,, Edizioni della Scuola Normale, (1997). Google Scholar

[2]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[3]

F. Andreu, V. Caselles, J. I. Díaz and J. M. Mazón, Some qualitative properties for the total variation flow,, J. Funct. Anal., 188 (2002), 516. doi: 10.1006/jfan.2001.3829. Google Scholar

[4]

F. Andreu, V. Caselles and J. M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals,, Oxford Mathematical Monographs, (2004). doi: 10.1007/978-3-0348-7928-6. Google Scholar

[5]

G. Anzellotti, Pairings between measures and bounded functions and compensated compactness,, Ann. Mat. Pura Appl., 135 (1983), 293. doi: 10.1007/BF01781073. Google Scholar

[6]

G. Bellettini, Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations,, Edizioni della Scuola Normale, (2013). doi: 10.1007/978-88-7642-429-8. Google Scholar

[7]

G. Bellettini, V. Caselles and M. Novaga, The total variation flow in $\mathbbR^N$,, J. Differential Equations, 184 (2002), 475. doi: 10.1006/jdeq.2001.4150. Google Scholar

[8]

G. Bellettini, V. Caselles and M. Novaga, Explicit solutions of the eigenvalue problem -div$(\frac{Du}{|Du|}) = u$,, SIAM J. Math. Anal., 36 (2005), 1095. doi: 10.1137/S0036141003430007. Google Scholar

[9]

K. A. Brakke, The Motion of a Surface by its Mean Curvature,, Math. Notes, (1978). Google Scholar

[10]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland, (1973). Google Scholar

[11]

J. Buckland, Mean curvature flow with free boundary on smooth hypersurfaces,, J. Reine Angew. Math., 586 (2005), 71. doi: 10.1515/crll.2005.2005.586.71. Google Scholar

[12]

V. Caselles, A. Chambolle and M. Novaga, The discontinuity set of solutions of the TV denoising problem and some extensions,, Multiscale Model. Simul., 6 (2007), 879. doi: 10.1137/070683003. Google Scholar

[13]

V. Caselles, A. Chambolle and M. Novaga, Total variation in imaging,, in Handbook of Mathematical Methods in Imaging, (2011), 1016. doi: 10.1007/978-0-387-92920-0_23. Google Scholar

[14]

A. Cesaroni and M. Novaga, Long-time behavior of the mean curvature flow with periodic forcing,, Comm. Partial Differential Equations, 38 (2013), 780. doi: 10.1080/03605302.2013.771508. Google Scholar

[15]

A. Chambolle, V. Caselles, D. Cremers, M. Novaga and T. Pock, An introduction to total variation for image analysis,, in Theoretical Foundations and Numerical Methods for Sparse Recovery, (2010), 263. doi: 10.1515/9783110226157.263. Google Scholar

[16]

K. Ecker, Estimates for evolutionary surfaces of prescribed mean curvature,, Math. Z., 180 (1982), 179. doi: 10.1007/BF01318902. Google Scholar

[17]

K. Ecker and G. Huisken, Mean curvature evolution of entire graphs,, Ann. of Math., 130 (1989), 453. doi: 10.2307/1971452. Google Scholar

[18]

K. Ecker and G. Huisken, Interior estimates for hypersurfaces moving by mean curvature,, Invent. Math., 105 (1991), 547. doi: 10.1007/BF01232278. Google Scholar

[19]

M. Gage and R. Hamilton, The heat equation shrinking convex plane curves,, J. Differential Geom., 23 (1986), 69. Google Scholar

[20]

C. Gerhardt, Evolutionary surfaces of prescribed mean curvature,, J. Differential Equations, 36 (1980), 139. doi: 10.1016/0022-0396(80)90081-9. Google Scholar

[21]

E. Giusti, Minimal Surfaces and Functions of Bounded Variation,, Monographs in Mathematics, (1984). doi: 10.1007/978-1-4684-9486-0. Google Scholar

[22]

A. Lichnewski and R. Temam, Pseudosolutions of the time-dependent minimal surface problem,, J. Differential Equations, 30 (1978), 340. doi: 10.1016/0022-0396(78)90005-0. Google Scholar

[23]

A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems,, Birkhäuser, (1995). doi: 10.1007/978-3-0348-9234-6. Google Scholar

[24]

U. Massari, Esistenza e regolarità delle ipersuperfici di curvatura media assegnata in $\mathbbR^n$,, Arch. Ration. Mech. Anal., 55 (1974), 357. Google Scholar

[25]

I. Rudin, S. Osher and E. Fatemi, Nonlinear total variation based noise removal argorithms,, Physica D, 60 (1992), 259. doi: 10.1016/0167-2789(92)90242-F. Google Scholar

[26]

A. Stahl, Regularity estimates for solutions to the mean curvature flow with a Neumann boundary condition,, Calc. Var. Partial Differential Equations, 4 (1996), 385. doi: 10.1007/BF01190825. Google Scholar

[27]

I. Tamanini, Boundaries of Caccioppoli sets with Hölder-continuous normal vector,, J. Reine Angew. Math., 334 (1982), 27. doi: 10.1515/crll.1982.334.27. Google Scholar

[1]

Kangsheng Liu, Xu Liu, Bopeng Rao. Eventual regularity of a wave equation with boundary dissipation. Mathematical Control & Related Fields, 2012, 2 (1) : 17-28. doi: 10.3934/mcrf.2012.2.17

[2]

Ramzi Alsaedi. Perturbation effects for the minimal surface equation with multiple variable exponents. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 139-150. doi: 10.3934/dcdss.2019010

[3]

Dominique Zosso, Braxton Osting. A minimal surface criterion for graph partitioning. Inverse Problems & Imaging, 2016, 10 (4) : 1149-1180. doi: 10.3934/ipi.2016036

[4]

Alberto Ferrero, Filippo Gazzola, Hans-Christoph Grunau. Decay and local eventual positivity for biharmonic parabolic equations. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1129-1157. doi: 10.3934/dcds.2008.21.1129

[5]

Gary Lieberman. A new regularity estimate for solutions of singular parabolic equations. Conference Publications, 2005, 2005 (Special) : 605-610. doi: 10.3934/proc.2005.2005.605

[6]

Filippo Gazzola, Hans-Christoph Grunau. Eventual local positivity for a biharmonic heat equation in RN. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 83-87. doi: 10.3934/dcdss.2008.1.83

[7]

Chi Hin Chan, Magdalena Czubak, Luis Silvestre. Eventual regularization of the slightly supercritical fractional Burgers equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 847-861. doi: 10.3934/dcds.2010.27.847

[8]

Alexandre Montaru. Wellposedness and regularity for a degenerate parabolic equation arising in a model of chemotaxis with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 231-256. doi: 10.3934/dcdsb.2014.19.231

[9]

Dung Le. Partial regularity of solutions to a class of strongly coupled degenerate parabolic systems. Conference Publications, 2005, 2005 (Special) : 576-586. doi: 10.3934/proc.2005.2005.576

[10]

Xiaolong Han, Guozhen Lu. Regularity of solutions to an integral equation associated with Bessel potential. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1111-1119. doi: 10.3934/cpaa.2011.10.1111

[11]

Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483

[12]

Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027

[13]

Chi-Cheung Poon. Blowup rate of solutions of a degenerate nonlinear parabolic equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5317-5336. doi: 10.3934/dcdsb.2019060

[14]

Giuseppe Viglialoro, Thomas E. Woolley. Eventual smoothness and asymptotic behaviour of solutions to a chemotaxis system perturbed by a logistic growth. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3023-3045. doi: 10.3934/dcdsb.2017199

[15]

Lydia Ouaili. Minimal time of null controllability of two parabolic equations. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019031

[16]

Felipe Linares, Gustavo Ponce. On special regularity properties of solutions of the Zakharov-Kuznetsov equation. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1561-1572. doi: 10.3934/cpaa.2018074

[17]

Sergey Zelik. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Communications on Pure & Applied Analysis, 2004, 3 (4) : 921-934. doi: 10.3934/cpaa.2004.3.921

[18]

Alessio Figalli, Young-Heon Kim. Partial regularity of Brenier solutions of the Monge-Ampère equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 559-565. doi: 10.3934/dcds.2010.28.559

[19]

Zhaohui Huo, Yoshinori Morimoto, Seiji Ukai, Tong Yang. Regularity of solutions for spatially homogeneous Boltzmann equation without angular cutoff. Kinetic & Related Models, 2008, 1 (3) : 453-489. doi: 10.3934/krm.2008.1.453

[20]

Yoshinori Morimoto, Seiji Ukai, Chao-Jiang Xu, Tong Yang. Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff. Discrete & Continuous Dynamical Systems - A, 2009, 24 (1) : 187-212. doi: 10.3934/dcds.2009.24.187

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

[Back to Top]