December  2015, 35(12): 5609-5629. doi: 10.3934/dcds.2015.35.5609

Harmonic functions in union of chambers

1. 

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, Via Cozzi, 55 - 20125 Milano, Italy

2. 

Dipartimento di Matematica "Giuseppe Peano", Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino

Received  March 2014 Published  May 2015

We characterize the set of harmonic functions with Dirichlet boundary conditions in unbounded domains which are union of two different chambers. We analyse the asymptotic behavior of the solutions in connection with the changes in the domain's geometry; we classify all (possibly sign-changing) infinite energy solutions having given asymptotic frequency at the infinite ends of the domain; finally we sketch the case of several different chambers.
Citation: Laura Abatangelo, Susanna Terracini. Harmonic functions in union of chambers. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5609-5629. doi: 10.3934/dcds.2015.35.5609
References:
[1]

L. Abatangelo, V. Felli and S. Terracini, On the sharp effect of attaching a thin handle on the spectral rate of convergence,, Journal of Functional Analysis, 266 (2014), 3632. doi: 10.1016/j.jfa.2013.11.019. Google Scholar

[2]

L. Abatangelo, V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part II,, Journal of Differential Equations, 256 (2014), 3301. doi: 10.1016/j.jde.2014.02.010. Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, Academic Press 2003., (2003). Google Scholar

[4]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Netw. Heterog. Media, 2 (2007), 761. doi: 10.3934/nhm.2007.2.761. Google Scholar

[5]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 752. doi: 10.1051/cocv:2006020. Google Scholar

[6]

B. E. J. Dahlberg, Estimates for harmonic measure,, Arch. Rational Mech. Anal., 65 (1977), 275. doi: 10.1007/BF00280445. Google Scholar

[7]

V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part I,, J. Differential Equations, 255 (2013), 633. doi: 10.1016/j.jde.2013.04.017. Google Scholar

[8]

T. Gilbarg, Elliptic Partial Differential Equations,, Springer, (2001). Google Scholar

[9]

V. Isakov, Inverse problems for Partial Differential Equations,, Springer, (2006). Google Scholar

[10]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains,, Adv. in Math., 46 (1982), 80. doi: 10.1016/0001-8708(82)90055-X. Google Scholar

[11]

T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1995). Google Scholar

[12]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,, Springer, (1996). doi: 10.1007/978-1-4612-5338-9. Google Scholar

[13]

M. Murata, On construction of Martin boundaries for second order elliptic equations,, Publ. Res. Inst. Math. Sci., 26 (1990), 585. doi: 10.2977/prims/1195170848. Google Scholar

[14]

Y. Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification,, Duke Math. J., 57 (1988), 955. doi: 10.1215/S0012-7094-88-05743-2. Google Scholar

[15]

Y. Pinchover, On positive solutions of elliptic equations with periodic coefficients in unbounded domains,, in Maximum Principles and Eigenvalue Problems in Partial Differential Equations (Knoxville, (1987), 218. Google Scholar

[16]

Y. Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators,, Ann. Inst.H. Poincaré Anal. Non Linéaire, 11 (1994), 313. Google Scholar

[17]

R. G. Pinsky, Positive Harmonic Functions and Diffusion,, Cambridge Studies in Advanced Mathematics, (1995). doi: 10.1017/CBO9780511526244. Google Scholar

[18]

M. Protter and H. Weinberger, Maximum Principles in Differential Equations,, Springer, (1984). doi: 10.1007/978-1-4612-5282-5. Google Scholar

[19]

W. Rudin, Real and Complex Analysis,, McGraw-Hill, (1987). Google Scholar

show all references

References:
[1]

L. Abatangelo, V. Felli and S. Terracini, On the sharp effect of attaching a thin handle on the spectral rate of convergence,, Journal of Functional Analysis, 266 (2014), 3632. doi: 10.1016/j.jfa.2013.11.019. Google Scholar

[2]

L. Abatangelo, V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part II,, Journal of Differential Equations, 256 (2014), 3301. doi: 10.1016/j.jde.2014.02.010. Google Scholar

[3]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, Academic Press 2003., (2003). Google Scholar

[4]

G. Buttazzo and F. Santambrogio, Asymptotical compliance optimization for connected networks,, Netw. Heterog. Media, 2 (2007), 761. doi: 10.3934/nhm.2007.2.761. Google Scholar

[5]

G. Buttazzo, F. Santambrogio and N. Varchon, Asymptotics of an optimal compliance-location problem,, ESAIM Control Optim. Calc. Var., 12 (2006), 752. doi: 10.1051/cocv:2006020. Google Scholar

[6]

B. E. J. Dahlberg, Estimates for harmonic measure,, Arch. Rational Mech. Anal., 65 (1977), 275. doi: 10.1007/BF00280445. Google Scholar

[7]

V. Felli and S. Terracini, Singularity of eigenfunctions at the junction of shrinking tubes. Part I,, J. Differential Equations, 255 (2013), 633. doi: 10.1016/j.jde.2013.04.017. Google Scholar

[8]

T. Gilbarg, Elliptic Partial Differential Equations,, Springer, (2001). Google Scholar

[9]

V. Isakov, Inverse problems for Partial Differential Equations,, Springer, (2006). Google Scholar

[10]

D. S. Jerison and C. E. Kenig, Boundary behavior of harmonic functions in nontangentially accessible domains,, Adv. in Math., 46 (1982), 80. doi: 10.1016/0001-8708(82)90055-X. Google Scholar

[11]

T. Kato, Perturbation Theory for Linear Operators,, Springer-Verlag, (1995). Google Scholar

[12]

A. Kirsch, An Introduction to the Mathematical Theory of Inverse Problems,, Springer, (1996). doi: 10.1007/978-1-4612-5338-9. Google Scholar

[13]

M. Murata, On construction of Martin boundaries for second order elliptic equations,, Publ. Res. Inst. Math. Sci., 26 (1990), 585. doi: 10.2977/prims/1195170848. Google Scholar

[14]

Y. Pinchover, On positive solutions of second-order elliptic equations, stability results, and classification,, Duke Math. J., 57 (1988), 955. doi: 10.1215/S0012-7094-88-05743-2. Google Scholar

[15]

Y. Pinchover, On positive solutions of elliptic equations with periodic coefficients in unbounded domains,, in Maximum Principles and Eigenvalue Problems in Partial Differential Equations (Knoxville, (1987), 218. Google Scholar

[16]

Y. Pinchover, On positive Liouville theorems and asymptotic behavior of solutions of Fuchsian type elliptic operators,, Ann. Inst.H. Poincaré Anal. Non Linéaire, 11 (1994), 313. Google Scholar

[17]

R. G. Pinsky, Positive Harmonic Functions and Diffusion,, Cambridge Studies in Advanced Mathematics, (1995). doi: 10.1017/CBO9780511526244. Google Scholar

[18]

M. Protter and H. Weinberger, Maximum Principles in Differential Equations,, Springer, (1984). doi: 10.1007/978-1-4612-5282-5. Google Scholar

[19]

W. Rudin, Real and Complex Analysis,, McGraw-Hill, (1987). Google Scholar

[1]

Gershon Kresin, Vladimir Maz’ya. Optimal estimates for the gradient of harmonic functions in the multidimensional half-space. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 425-440. doi: 10.3934/dcds.2010.28.425

[2]

Zhong-Qing Wang, Ben-Yu Guo, Yan-Na Wu. Pseudospectral method using generalized Laguerre functions for singular problems on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1019-1038. doi: 10.3934/dcdsb.2009.11.1019

[3]

Xi-Nan Ma, Jiang Ye, Yun-Hua Ye. Principal curvature estimates for the level sets of harmonic functions and minimal graphs in $R^3$. Communications on Pure & Applied Analysis, 2011, 10 (1) : 225-243. doi: 10.3934/cpaa.2011.10.225

[4]

Giorgio Fusco, Francesco Leonetti, Cristina Pignotti. On the asymptotic behavior of symmetric solutions of the Allen-Cahn equation in unbounded domains in $\mathbb{R}^2$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (2) : 725-742. doi: 10.3934/dcds.2017030

[5]

Xiaobin Yao, Qiaozhen Ma, Tingting Liu. Asymptotic behavior for stochastic plate equations with rotational inertia and Kelvin-Voigt dissipative term on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1889-1917. doi: 10.3934/dcdsb.2018247

[6]

Anton Petrunin. Harmonic functions on Alexandrov spaces and their applications. Electronic Research Announcements, 2003, 9: 135-141.

[7]

Dag Lukkassen, Annette Meidell, Peter Wall. On the conjugate of periodic piecewise harmonic functions. Networks & Heterogeneous Media, 2008, 3 (3) : 633-646. doi: 10.3934/nhm.2008.3.633

[8]

Esa V. Vesalainen. Rellich type theorems for unbounded domains. Inverse Problems & Imaging, 2014, 8 (3) : 865-883. doi: 10.3934/ipi.2014.8.865

[9]

Paulo Cesar Carrião, Olimpio Hiroshi Miyagaki. On a class of variational systems in unbounded domains. Conference Publications, 2001, 2001 (Special) : 74-79. doi: 10.3934/proc.2001.2001.74

[10]

Dan Mangoubi. A gradient estimate for harmonic functions sharing the same zeros. Electronic Research Announcements, 2014, 21: 62-71. doi: 10.3934/era.2014.21.62

[11]

Matthew B. Rudd, Heather A. Van Dyke. Median values, 1-harmonic functions, and functions of least gradient. Communications on Pure & Applied Analysis, 2013, 12 (2) : 711-719. doi: 10.3934/cpaa.2013.12.711

[12]

Bixiang Wang, Xiaoling Gao. Random attractors for wave equations on unbounded domains. Conference Publications, 2009, 2009 (Special) : 800-809. doi: 10.3934/proc.2009.2009.800

[13]

Martino Prizzi. A remark on reaction-diffusion equations in unbounded domains. Discrete & Continuous Dynamical Systems - A, 2003, 9 (2) : 281-286. doi: 10.3934/dcds.2003.9.281

[14]

Núria Fagella, Christian Henriksen. Deformation of entire functions with Baker domains. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 379-394. doi: 10.3934/dcds.2006.15.379

[15]

Dorina Mitrea and Marius Mitrea. Boundary integral methods for harmonic differential forms in Lipschitz domains. Electronic Research Announcements, 1996, 2: 92-97.

[16]

James Bremer, Vladimir Rokhlin. Improved estimates for nonoscillatory phase functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4101-4131. doi: 10.3934/dcds.2016.36.4101

[17]

Seppo Granlund, Niko Marola. Phragmén--Lindelöf theorem for infinity harmonic functions. Communications on Pure & Applied Analysis, 2015, 14 (1) : 127-132. doi: 10.3934/cpaa.2015.14.127

[18]

Raf Cluckers, Julia Gordon, Immanuel Halupczok. Motivic functions, integrability, and applications to harmonic analysis on $p$-adic groups. Electronic Research Announcements, 2014, 21: 137-152. doi: 10.3934/era.2014.21.137

[19]

Fausto Ferrari, Qing Liu, Juan Manfredi. On the characterization of $p$-harmonic functions on the Heisenberg group by mean value properties. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2779-2793. doi: 10.3934/dcds.2014.34.2779

[20]

Lizhi Zhang, Congming Li, Wenxiong Chen, Tingzhi Cheng. A Liouville theorem for $\alpha$-harmonic functions in $\mathbb{R}^n_+$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1721-1736. doi: 10.3934/dcds.2016.36.1721

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]