American Institute of Mathematical Sciences

December  2015, 35(12): 5555-5607. doi: 10.3934/dcds.2015.35.5555

Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian

 1 Laboratoire Amiénois de Mathématique Fondamentale et Appliquée, CNRS UMR 7352, UFR des Sciences, 33, rue Saint-Leu, 80039, Amiens Cedex 1, France

Received  November 2013 Revised  March 2014 Published  May 2015

We present a notion of weak solution for the Dirichlet problem driven by the fractional Laplacian, following the Stampacchia theory. Then, we study semilinear problems of the form $$\left\lbrace\begin{array}{ll} (-\triangle)^s u = \pm\,f(x,u) & \hbox{ in }\Omega \\ u=g & \hbox{ in }\mathbb{R}^n\setminus\overline{\Omega}\\ Eu=h & \hbox{ on }\partial\Omega \end{array}\right.$$ when the nonlinearity $f$ and the boundary data $g,h$ are positive, but allowing the right-hand side to be both positive or negative and looking for solutions that blow up at the boundary. The operator $E$ is a weighted limit to the boundary: for example, if $\Omega$ is the ball $B$, there exists a constant $C(n,s)>0$ such that $$Eu(\theta) = C(n,s) \lim_{x \to \theta}_{x\in B} u(x) {dist(x,\partial B)}^{1-s}, \hbox{ for all } \theta \in \partial B.$$ Our starting observation is the existence of $s$-harmonic functions which explode at the boundary: these will be used both as supersolutions in the case of negative right-hand side and as subsolutions in the positive case.
Citation: Nicola Abatangelo. Large $s$-harmonic functions and boundary blow-up solutions for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (12) : 5555-5607. doi: 10.3934/dcds.2015.35.5555
References:
 [1] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory,, 2nd edition, (2001). doi: 10.1007/978-1-4757-8137-3. Google Scholar [2] C. Bandle, Asymptotic behavior of large solutions of elliptic equations,, Analele Universităţii din Craiova. Seria Matematică-Informatică, 32 (2005), 1. Google Scholar [3] K. Bogdan, Representation of $\alpha$-harmonic functions in Lipschitz domains,, Hiroshima Mathematical Journal, 29 (1999), 227. Google Scholar [4] K. Bogdan, The boundary Harnack principle for the fractional Laplacian,, Studia Mathematica, 123 (1997), 43. Google Scholar [5] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song and Z. Vondraček, Potential Analysis of Stable Processes and Its Extensions,, Lecture Notes in Mathematics, (2009). doi: 10.1007/978-3-642-02141-1. Google Scholar [6] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Communications in Partial Differential Equations, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar [7] H. Chen, P. Felmer and A. Quaas, Large solutions to elliptic equations involving the fractional Laplacian,, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, (2014). doi: 10.1016/j.anihpc.2014.08.001. Google Scholar [8] H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures,, Journal of Differential Equations, 257 (2014), 1457. doi: 10.1016/j.jde.2014.05.012. Google Scholar [9] Z.-Q. Chen, Multidimensional symmetric stable processes,, The Korean Journal of Computational & Applied Mathematics, 6 (1999), 227. Google Scholar [10] P. Clément and G. Sweers, Getting a solution between sub- and supersolutions without monotone iteration,, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 19 (1987), 189. Google Scholar [11] O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry,, Journal of Differential Equations, 249 (2010), 931. doi: 10.1016/j.jde.2010.02.023. Google Scholar [12] O. Costin, L. Dupaigne and O. Goubet, Uniqueness of large solutions,, Journal of Mathematical Analysis and Applications, 395 (2012), 806. doi: 10.1016/j.jmaa.2012.05.085. Google Scholar [13] J.-S. Dhersin and J.-F. Le Gall, Wiener's test for super-Brownian motion and the Brownian snake,, Probability Theory and Related Fields, 108 (1997), 103. doi: 10.1007/s004400050103. Google Scholar [14] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar [15] S. Dumont, L. Dupaigne, O. Goubet and V. Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions,, Advanced Nonlinear Studies, 7 (2007), 271. Google Scholar [16] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations,, Chapman & Hall/CRC, (2011). doi: 10.1201/b10802. Google Scholar [17] P. Felmer and A. Quaas, Boundary blow up solutions for fractional elliptic equations,, Asymptotic Analysis, 78 (2012), 123. Google Scholar [18] G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of mu-transmission pseudodifferential operators,, Advances in Mathematics, 268 (2015), 478. doi: 10.1016/j.aim.2014.09.018. Google Scholar [19] K. H. Karlsen, F. Petitta and S. Ulusoy, A duality approach to the fractional Laplacian with measure data,, Publicacions Matemàtiques, 55 (2011), 151. doi: 10.5565/PUBLMAT_55111_07. Google Scholar [20] J. B. Keller, On solutions of $\Delta u=f(u)$,, Communications on Pure and Applied Mathematics, 10 (1957), 503. doi: 10.1002/cpa.3160100402. Google Scholar [21] T. Klimsiak and A. Rozkosz, Dirichlet forms and semilinear elliptic equations with measure data,, Journal of Functional Analysis, 265 (2013), 890. doi: 10.1016/j.jfa.2013.05.028. Google Scholar [22] N. S. Landkof, Foundations of Modern Potential Theory,, Translated from the Russian by A. P. Doohovskoy, (1972). Google Scholar [23] M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations,, Journal of Evolution Equations, 3 (2003), 637. doi: 10.1007/s00028-003-0122-y. Google Scholar [24] M. Marcus and L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures,, De Gruyter, (2014). Google Scholar [25] M. Montenegro and A. C. Ponce, The sub-supersolution method for weak solutions,, Proceedings of the American Mathematical Society, 136 (2008), 2429. doi: 10.1090/S0002-9939-08-09231-9. Google Scholar [26] B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation,, Memoirs of the American Mathematical Society, 168 (2004). doi: 10.1090/memo/0798. Google Scholar [27] R. Osserman, On the inequality $\Delta u\geq f(u)$,, Pacific Journal of Mathematics, 7 (1957), 1641. Google Scholar [28] M. Riesz, Intégrales de Riemann-Liouville et potentiels,, Acta Sci. Math. (Szeged), 9 (1938), 1. Google Scholar [29] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,, Journal de Mathématiques Pures et Appliquées (9), 101 (2014), 275. Google Scholar [30] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Communications on Pure and Applied Mathematics, 60 (2007), 67. doi: 10.1002/cpa.20153. Google Scholar [31] G. Stampacchia, Équations Elliptiques du Second Ordre à Coefficients Discontinus,, Séminaire de Mathématiques Supérieures, (1965). Google Scholar

show all references

References:
 [1] S. Axler, P. Bourdon and W. Ramey, Harmonic Function Theory,, 2nd edition, (2001). doi: 10.1007/978-1-4757-8137-3. Google Scholar [2] C. Bandle, Asymptotic behavior of large solutions of elliptic equations,, Analele Universităţii din Craiova. Seria Matematică-Informatică, 32 (2005), 1. Google Scholar [3] K. Bogdan, Representation of $\alpha$-harmonic functions in Lipschitz domains,, Hiroshima Mathematical Journal, 29 (1999), 227. Google Scholar [4] K. Bogdan, The boundary Harnack principle for the fractional Laplacian,, Studia Mathematica, 123 (1997), 43. Google Scholar [5] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song and Z. Vondraček, Potential Analysis of Stable Processes and Its Extensions,, Lecture Notes in Mathematics, (2009). doi: 10.1007/978-3-642-02141-1. Google Scholar [6] L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Communications in Partial Differential Equations, 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar [7] H. Chen, P. Felmer and A. Quaas, Large solutions to elliptic equations involving the fractional Laplacian,, Annales de l'Institut Henri Poincaré (C) Analyse Non Linéaire, (2014). doi: 10.1016/j.anihpc.2014.08.001. Google Scholar [8] H. Chen and L. Véron, Semilinear fractional elliptic equations involving measures,, Journal of Differential Equations, 257 (2014), 1457. doi: 10.1016/j.jde.2014.05.012. Google Scholar [9] Z.-Q. Chen, Multidimensional symmetric stable processes,, The Korean Journal of Computational & Applied Mathematics, 6 (1999), 227. Google Scholar [10] P. Clément and G. Sweers, Getting a solution between sub- and supersolutions without monotone iteration,, Rendiconti dell'Istituto di Matematica dell'Università di Trieste, 19 (1987), 189. Google Scholar [11] O. Costin and L. Dupaigne, Boundary blow-up solutions in the unit ball: Asymptotics, uniqueness and symmetry,, Journal of Differential Equations, 249 (2010), 931. doi: 10.1016/j.jde.2010.02.023. Google Scholar [12] O. Costin, L. Dupaigne and O. Goubet, Uniqueness of large solutions,, Journal of Mathematical Analysis and Applications, 395 (2012), 806. doi: 10.1016/j.jmaa.2012.05.085. Google Scholar [13] J.-S. Dhersin and J.-F. Le Gall, Wiener's test for super-Brownian motion and the Brownian snake,, Probability Theory and Related Fields, 108 (1997), 103. doi: 10.1007/s004400050103. Google Scholar [14] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces,, Bulletin des Sciences Mathématiques, 136 (2012), 521. doi: 10.1016/j.bulsci.2011.12.004. Google Scholar [15] S. Dumont, L. Dupaigne, O. Goubet and V. Rădulescu, Back to the Keller-Osserman condition for boundary blow-up solutions,, Advanced Nonlinear Studies, 7 (2007), 271. Google Scholar [16] L. Dupaigne, Stable Solutions of Elliptic Partial Differential Equations,, Chapman & Hall/CRC, (2011). doi: 10.1201/b10802. Google Scholar [17] P. Felmer and A. Quaas, Boundary blow up solutions for fractional elliptic equations,, Asymptotic Analysis, 78 (2012), 123. Google Scholar [18] G. Grubb, Fractional Laplacians on domains, a development of Hörmander's theory of mu-transmission pseudodifferential operators,, Advances in Mathematics, 268 (2015), 478. doi: 10.1016/j.aim.2014.09.018. Google Scholar [19] K. H. Karlsen, F. Petitta and S. Ulusoy, A duality approach to the fractional Laplacian with measure data,, Publicacions Matemàtiques, 55 (2011), 151. doi: 10.5565/PUBLMAT_55111_07. Google Scholar [20] J. B. Keller, On solutions of $\Delta u=f(u)$,, Communications on Pure and Applied Mathematics, 10 (1957), 503. doi: 10.1002/cpa.3160100402. Google Scholar [21] T. Klimsiak and A. Rozkosz, Dirichlet forms and semilinear elliptic equations with measure data,, Journal of Functional Analysis, 265 (2013), 890. doi: 10.1016/j.jfa.2013.05.028. Google Scholar [22] N. S. Landkof, Foundations of Modern Potential Theory,, Translated from the Russian by A. P. Doohovskoy, (1972). Google Scholar [23] M. Marcus and L. Véron, Existence and uniqueness results for large solutions of general nonlinear elliptic equations,, Journal of Evolution Equations, 3 (2003), 637. doi: 10.1007/s00028-003-0122-y. Google Scholar [24] M. Marcus and L. Véron, Nonlinear Second Order Elliptic Equations Involving Measures,, De Gruyter, (2014). Google Scholar [25] M. Montenegro and A. C. Ponce, The sub-supersolution method for weak solutions,, Proceedings of the American Mathematical Society, 136 (2008), 2429. doi: 10.1090/S0002-9939-08-09231-9. Google Scholar [26] B. Mselati, Classification and probabilistic representation of the positive solutions of a semilinear elliptic equation,, Memoirs of the American Mathematical Society, 168 (2004). doi: 10.1090/memo/0798. Google Scholar [27] R. Osserman, On the inequality $\Delta u\geq f(u)$,, Pacific Journal of Mathematics, 7 (1957), 1641. Google Scholar [28] M. Riesz, Intégrales de Riemann-Liouville et potentiels,, Acta Sci. Math. (Szeged), 9 (1938), 1. Google Scholar [29] X. Ros-Oton and J. Serra, The Dirichlet problem for the fractional Laplacian: Regularity up to the boundary,, Journal de Mathématiques Pures et Appliquées (9), 101 (2014), 275. Google Scholar [30] L. Silvestre, Regularity of the obstacle problem for a fractional power of the Laplace operator,, Communications on Pure and Applied Mathematics, 60 (2007), 67. doi: 10.1002/cpa.20153. Google Scholar [31] G. Stampacchia, Équations Elliptiques du Second Ordre à Coefficients Discontinus,, Séminaire de Mathématiques Supérieures, (1965). Google Scholar
 [1] Huyuan Chen, Hichem Hajaiej, Ying Wang. Boundary blow-up solutions to fractional elliptic equations in a measure framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1881-1903. doi: 10.3934/dcds.2016.36.1881 [2] Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101 [3] Yihong Du, Zongming Guo, Feng Zhou. Boundary blow-up solutions with interior layers and spikes in a bistable problem. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 271-298. doi: 10.3934/dcds.2007.19.271 [4] Yihong Du, Zongming Guo. The degenerate logistic model and a singularly mixed boundary blow-up problem. Discrete & Continuous Dynamical Systems - A, 2006, 14 (1) : 1-29. doi: 10.3934/dcds.2006.14.1 [5] Lingyu Jin, Yan Li. A Hopf's lemma and the boundary regularity for the fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2019, 39 (3) : 1477-1495. doi: 10.3934/dcds.2019063 [6] Juan Dávila, Manuel Del Pino, Catalina Pesce, Juncheng Wei. Blow-up for the 3-dimensional axially symmetric harmonic map flow into $S^2$. Discrete & Continuous Dynamical Systems - A, 2019, 0 (0) : 1-31. doi: 10.3934/dcds.2019237 [7] Binhua Feng. On the blow-up solutions for the fractional nonlinear Schrödinger equation with combined power-type nonlinearities. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1785-1804. doi: 10.3934/cpaa.2018085 [8] Van Duong Dinh. On blow-up solutions to the focusing mass-critical nonlinear fractional Schrödinger equation. Communications on Pure & Applied Analysis, 2019, 18 (2) : 689-708. doi: 10.3934/cpaa.2019034 [9] Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267 [10] Mikko Kemppainen, Peter Sjögren, José Luis Torrea. Wave extension problem for the fractional Laplacian. Discrete & Continuous Dynamical Systems - A, 2015, 35 (10) : 4905-4929. doi: 10.3934/dcds.2015.35.4905 [11] Marina Chugunova, Chiu-Yen Kao, Sarun Seepun. On the Benilov-Vynnycky blow-up problem. Discrete & Continuous Dynamical Systems - B, 2015, 20 (5) : 1443-1460. doi: 10.3934/dcdsb.2015.20.1443 [12] Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 [13] Lizhi Zhang. Symmetry of solutions to semilinear equations involving the fractional laplacian. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2393-2409. doi: 10.3934/cpaa.2015.14.2393 [14] Björn Sandstede, Arnd Scheel. Evans function and blow-up methods in critical eigenvalue problems. Discrete & Continuous Dynamical Systems - A, 2004, 10 (4) : 941-964. doi: 10.3934/dcds.2004.10.941 [15] Helin Guo, Yimin Zhang, Huansong Zhou. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1875-1897. doi: 10.3934/cpaa.2018089 [16] Mohamed-Ali Hamza, Hatem Zaag. Blow-up results for semilinear wave equations in the superconformal case. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2315-2329. doi: 10.3934/dcdsb.2013.18.2315 [17] Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435 [18] Li Ma. Blow-up for semilinear parabolic equations with critical Sobolev exponent. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1103-1110. doi: 10.3934/cpaa.2013.12.1103 [19] Van Tien Nguyen. On the blow-up results for a class of strongly perturbed semilinear heat equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3585-3626. doi: 10.3934/dcds.2015.35.3585 [20] Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

2018 Impact Factor: 1.143