September  2015, 35(9): 4385-4414. doi: 10.3934/dcds.2015.35.4385

Robustness of performance and stability for multistep and updated multistep MPC schemes

1. 

University of Bayreuth, Chair of Applied Mathematics, Universitätsstraße 30, 95440 Bayreuth, Germany, Germany

Received  May 2014 Revised  August 2014 Published  April 2015

We consider a model predictive control approach to approximate the solution of infinite horizon optimal control problems for perturbed nonlinear discrete time systems. By reducing the number of re-optimizations, the computational load can be lowered considerably at the expense of reduced robustness of the closed-loop solution against perturbations. In this paper, we propose and analyze an update strategy based on re-optimizations on shrinking horizons which is computationally less expensive than that based on full horizon re-optimization, and at the same time allowing for rigorously quantifiable robust performance estimates.
Citation: Lars Grüne, Vryan Gil Palma. Robustness of performance and stability for multistep and updated multistep MPC schemes. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4385-4414. doi: 10.3934/dcds.2015.35.4385
References:
[1]

D. P. Bertsekas, Dynamic Programming and Optimal Control. Vol. 1 and 2,, Athena Scientific, (1995). Google Scholar

[2]

H. G. Bock, M. Diehl, E. A. Kostina and J. P. Schlöder, Constrained optimal feedback control of systems governed by large differential algebraic equations,, In L. Biegler, 3 (2007), 3. doi: 10.1137/1.9780898718935.ch1. Google Scholar

[3]

C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems,, in M. Grötschel, (2001), 3. Google Scholar

[4]

L. Grüne, Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems,, SIAM Journal on Control and Optimization, 48 (2009), 1206. doi: 10.1137/070707853. Google Scholar

[5]

L. Grüne, Economic receding horizon control without terminal constraints,, Automatica, 49 (2013), 725. doi: 10.1016/j.automatica.2012.12.003. Google Scholar

[6]

L. Grüne and V. G. Palma, On the Benefit of Re-optimization in Optimal Control under Perturbations,, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems - MTNS, (2014), 439. Google Scholar

[7]

L. Grüne and J. Pannek, Practical NMPC suboptimality estimates along trajectories,, Systems & Control Letters, 58 (2009), 161. doi: 10.1016/j.sysconle.2008.10.012. Google Scholar

[8]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms,, Springer-Verlag, (2011). doi: 10.1007/978-0-85729-501-9. Google Scholar

[9]

L. Grüne, J. Pannek, M. Seehafer and K. Worthmann, Analysis of unconstrained nonlinear MPC schemes with varying control horizon,, SIAM Journal on Control and Optimization, 48 (2010), 4938. doi: 10.1137/090758696. Google Scholar

[10]

L. Grüne and A. Rantzer, On the infinite horizon performance of receding horizon controllers,, IEEE Trans. Automat. Control, 53 (2008), 2100. doi: 10.1109/TAC.2008.927799. Google Scholar

[11]

C. M. Kellett, H. Shim and A. R. Teel, Further results on robustness of (possibly discontinuous) sample and hold feedback,, IEEE Trans. Automat. Control, 49 (2004), 1081. doi: 10.1109/TAC.2004.831184. Google Scholar

[12]

H. K. Khalil, Nonlinear Systems,, Prentice Hall PTR, (2002). Google Scholar

[13]

H. Maurer and H. J. Pesch, Solution Differentiability for Parametric Nonlinear Control Problems with Control-State Constraints,, SIAM Journal on Control and Optimization, 86 (1995), 285. doi: 10.1007/BF02192081. Google Scholar

[14]

V. Palma and L. Grüne, Stability, performance and robustness of sensitivity-based multistep feedback NMPC,, Extended Abstract in: Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems - MTNS 2012, (2012). Google Scholar

[15]

J. Pannek, J. Michael and M. Gerdts, A general framework for nonlinear model predictive control with abstract updates,, arXiv preprint, (). Google Scholar

[16]

H. J. Pesch, Numerical computation of neighboring optimum feedback control schemes in real-time,, Applied Mathematics and Optimization, 5 (1979), 231. doi: 10.1007/BF01442556. Google Scholar

[17]

J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design., Nob Hill Publishing, (2009). Google Scholar

[18]

E. D. Sontag, Clocks and Insensitivity to Small Measurement Errors,, ESAIM Control Optim. Calc. Var, 4 (1999), 537. doi: 10.1051/cocv:1999121. Google Scholar

[19]

V. Zavala and L. Biegler, The advanced-step NMPC controller: Optimality, stability and robustness,, Automatica, 45 (2009), 86. doi: 10.1016/j.automatica.2008.06.011. Google Scholar

show all references

References:
[1]

D. P. Bertsekas, Dynamic Programming and Optimal Control. Vol. 1 and 2,, Athena Scientific, (1995). Google Scholar

[2]

H. G. Bock, M. Diehl, E. A. Kostina and J. P. Schlöder, Constrained optimal feedback control of systems governed by large differential algebraic equations,, In L. Biegler, 3 (2007), 3. doi: 10.1137/1.9780898718935.ch1. Google Scholar

[3]

C. Büskens and H. Maurer, Sensitivity analysis and real-time optimization of parametric nonlinear programming problems,, in M. Grötschel, (2001), 3. Google Scholar

[4]

L. Grüne, Analysis and design of unconstrained nonlinear MPC schemes for finite and infinite dimensional systems,, SIAM Journal on Control and Optimization, 48 (2009), 1206. doi: 10.1137/070707853. Google Scholar

[5]

L. Grüne, Economic receding horizon control without terminal constraints,, Automatica, 49 (2013), 725. doi: 10.1016/j.automatica.2012.12.003. Google Scholar

[6]

L. Grüne and V. G. Palma, On the Benefit of Re-optimization in Optimal Control under Perturbations,, in Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems - MTNS, (2014), 439. Google Scholar

[7]

L. Grüne and J. Pannek, Practical NMPC suboptimality estimates along trajectories,, Systems & Control Letters, 58 (2009), 161. doi: 10.1016/j.sysconle.2008.10.012. Google Scholar

[8]

L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and Algorithms,, Springer-Verlag, (2011). doi: 10.1007/978-0-85729-501-9. Google Scholar

[9]

L. Grüne, J. Pannek, M. Seehafer and K. Worthmann, Analysis of unconstrained nonlinear MPC schemes with varying control horizon,, SIAM Journal on Control and Optimization, 48 (2010), 4938. doi: 10.1137/090758696. Google Scholar

[10]

L. Grüne and A. Rantzer, On the infinite horizon performance of receding horizon controllers,, IEEE Trans. Automat. Control, 53 (2008), 2100. doi: 10.1109/TAC.2008.927799. Google Scholar

[11]

C. M. Kellett, H. Shim and A. R. Teel, Further results on robustness of (possibly discontinuous) sample and hold feedback,, IEEE Trans. Automat. Control, 49 (2004), 1081. doi: 10.1109/TAC.2004.831184. Google Scholar

[12]

H. K. Khalil, Nonlinear Systems,, Prentice Hall PTR, (2002). Google Scholar

[13]

H. Maurer and H. J. Pesch, Solution Differentiability for Parametric Nonlinear Control Problems with Control-State Constraints,, SIAM Journal on Control and Optimization, 86 (1995), 285. doi: 10.1007/BF02192081. Google Scholar

[14]

V. Palma and L. Grüne, Stability, performance and robustness of sensitivity-based multistep feedback NMPC,, Extended Abstract in: Proceedings of the 20th International Symposium on Mathematical Theory of Networks and Systems - MTNS 2012, (2012). Google Scholar

[15]

J. Pannek, J. Michael and M. Gerdts, A general framework for nonlinear model predictive control with abstract updates,, arXiv preprint, (). Google Scholar

[16]

H. J. Pesch, Numerical computation of neighboring optimum feedback control schemes in real-time,, Applied Mathematics and Optimization, 5 (1979), 231. doi: 10.1007/BF01442556. Google Scholar

[17]

J. B. Rawlings and D. Q. Mayne, Model Predictive Control: Theory and Design., Nob Hill Publishing, (2009). Google Scholar

[18]

E. D. Sontag, Clocks and Insensitivity to Small Measurement Errors,, ESAIM Control Optim. Calc. Var, 4 (1999), 537. doi: 10.1051/cocv:1999121. Google Scholar

[19]

V. Zavala and L. Biegler, The advanced-step NMPC controller: Optimality, stability and robustness,, Automatica, 45 (2009), 86. doi: 10.1016/j.automatica.2008.06.011. Google Scholar

[1]

Rudy R. Negenborn, Peter-Jules van Overloop, Tamás Keviczky, Bart De Schutter. Distributed model predictive control of irrigation canals. Networks & Heterogeneous Media, 2009, 4 (2) : 359-380. doi: 10.3934/nhm.2009.4.359

[2]

Lars Grüne, Marleen Stieler. Multiobjective model predictive control for stabilizing cost criteria. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3905-3928. doi: 10.3934/dcdsb.2018336

[3]

Torsten Trimborn, Lorenzo Pareschi, Martin Frank. Portfolio optimization and model predictive control: A kinetic approach. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-30. doi: 10.3934/dcdsb.2019136

[4]

Judy Day, Jonathan Rubin, Gilles Clermont. Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation. Mathematical Biosciences & Engineering, 2010, 7 (4) : 739-763. doi: 10.3934/mbe.2010.7.739

[5]

João M. Lemos, Fernando Machado, Nuno Nogueira, Luís Rato, Manuel Rijo. Adaptive and non-adaptive model predictive control of an irrigation channel. Networks & Heterogeneous Media, 2009, 4 (2) : 303-324. doi: 10.3934/nhm.2009.4.303

[6]

Cristiana J. Silva, Helmut Maurer, Delfim F. M. Torres. Optimal control of a Tuberculosis model with state and control delays. Mathematical Biosciences & Engineering, 2017, 14 (1) : 321-337. doi: 10.3934/mbe.2017021

[7]

Gregory Zitelli, Seddik M. Djouadi, Judy D. Day. Combining robust state estimation with nonlinear model predictive control to regulate the acute inflammatory response to pathogen. Mathematical Biosciences & Engineering, 2015, 12 (5) : 1127-1139. doi: 10.3934/mbe.2015.12.1127

[8]

Luís Tiago Paiva, Fernando A. C. C. Fontes. Sampled–data model predictive control: Adaptive time–mesh refinement algorithms and guarantees of stability. Discrete & Continuous Dynamical Systems - B, 2019, 24 (5) : 2335-2364. doi: 10.3934/dcdsb.2019098

[9]

Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030

[10]

Enrique Fernández-Cara, Juan Límaco, Laurent Prouvée. Optimal control of a two-equation model of radiotherapy. Mathematical Control & Related Fields, 2018, 8 (1) : 117-133. doi: 10.3934/mcrf.2018005

[11]

Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219

[12]

Huaying Guo, Jin Liang. An optimal control model of carbon reduction and trading. Mathematical Control & Related Fields, 2016, 6 (4) : 535-550. doi: 10.3934/mcrf.2016015

[13]

IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054

[14]

Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456

[15]

Qingkai Kong, Zhipeng Qiu, Zi Sang, Yun Zou. Optimal control of a vector-host epidemics model. Mathematical Control & Related Fields, 2011, 1 (4) : 493-508. doi: 10.3934/mcrf.2011.1.493

[16]

Erin N. Bodine, Louis J. Gross, Suzanne Lenhart. Optimal control applied to a model for species augmentation. Mathematical Biosciences & Engineering, 2008, 5 (4) : 669-680. doi: 10.3934/mbe.2008.5.669

[17]

Carmen G. Higuera-Chan, Héctor Jasso-Fuentes, J. Adolfo Minjárez-Sosa. Control systems of interacting objects modeled as a game against nature under a mean field approach. Journal of Dynamics & Games, 2017, 4 (1) : 59-74. doi: 10.3934/jdg.2017004

[18]

Thalya Burden, Jon Ernstberger, K. Renee Fister. Optimal control applied to immunotherapy. Discrete & Continuous Dynamical Systems - B, 2004, 4 (1) : 135-146. doi: 10.3934/dcdsb.2004.4.135

[19]

Ellina Grigorieva, Evgenii Khailov. Optimal control of pollution stock. Conference Publications, 2011, 2011 (Special) : 578-588. doi: 10.3934/proc.2011.2011.578

[20]

Hang-Chin Lai, Jin-Chirng Lee, Shuh-Jye Chern. A variational problem and optimal control. Journal of Industrial & Management Optimization, 2011, 7 (4) : 967-975. doi: 10.3934/jimo.2011.7.967

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (8)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]