September  2015, 35(9): 4323-4343. doi: 10.3934/dcds.2015.35.4323

Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval

1. 

Russian Academy of Sciences, Central Economics and Mathematics Institute and Lomonosov Moscow State University, Russia 117418, Moscow, Nakhimovskii prospekt, 47, Russian Federation

2. 

Systems Research Institute, Polish Academy of Sciences, Warszawa, Moscow State University of Civil Engineering, Russian Federation

Received  April 2014 Revised  October 2014 Published  April 2015

We study an optimal control problem with Volterra-type integral equation, considered on a nonfixed time interval, subject to endpoint constraints of equality and inequality type. We obtain first-order necessary optimality conditions for an extended weak minimum, the notion of which is a natural generalization of the notion of weak minimum with account of variations of the time. The conditions obtained generalize the Euler--Lagrange equation and transversality conditions for the Lagrange problem in the classical calculus of variations with ordinary differential equations.
Citation: Andrei V. Dmitruk, Nikolai P. Osmolovskii. Necessary conditions for a weak minimum in optimal control problems with integral equations on a variable time interval. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4323-4343. doi: 10.3934/dcds.2015.35.4323
References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control,, (Translated from Russian). Consultants Bureau. New York etc., (1987). doi: 10.1007/978-1-4615-7551-1. Google Scholar

[2]

V. L. Bakke, A maximum principle for an optimal control problem with integral constraints,, JOTA, 13 (1974), 32. doi: 10.1007/BF00935608. Google Scholar

[3]

J. F. Bonnans and C. De La Vega, Optimal control of state constrained integral equations,, Set-Valued Var. Analysis, 18 (2010), 307. doi: 10.1007/s11228-010-0154-8. Google Scholar

[4]

J. F. Bonnans, C. De La Vega and X. Dupuis, First and second order optimality conditions for optimal control problems of state constrained integral equations,, JOTA, 159 (2013), 1. doi: 10.1007/s10957-013-0299-3. Google Scholar

[5]

D. A. Carlson, An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation,, JOTA, 54 (1987), 43. doi: 10.1007/BF00940404. Google Scholar

[6]

A. V. Dmitruk and A. M. Kaganovich, Quadratic order conditions for a weak minimum in optimal control problems with intermediate and mixed constraints,, Discrete and Continuous Dynamical Systems, 29 (2011), 523. doi: 10.3934/dcds.2011.29.523. Google Scholar

[7]

A. V. Dmitruk, A. A. Milyutin and N. P. Osmolovskii, Lyusternik's theorem and the theory of extrema,, Russian Math. Surveys, 35 (1980), 11. Google Scholar

[8]

A. V. Dmitruk and N. P. Osmolovskii, Necessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraints,, SIAM J. on Control and Optimization, 52 (2014), 3437. doi: 10.1137/130921465. Google Scholar

[9]

I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems,, (Translated from Russian), (1972). Google Scholar

[10]

R. F. Hartl and S. P. Sethi, Optimal control on a class of systems with continuous lags: Dynamic programming approach and economic interpretations,, JOTA, 43 (1984), 73. doi: 10.1007/BF00934747. Google Scholar

[11]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems,, (Translated from Russian), (1979). Google Scholar

[12]

M. I. Kamien and E. Muller, Optimal control with integral state equations,, The Review of Economic Studies, 43 (1976), 469. doi: 10.2307/2297225. Google Scholar

[13]

C. De la Vega, Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation,, JOTA, 130 (2006), 79. doi: 10.1007/s10957-006-9087-7. Google Scholar

[14]

V. R. Vinokurov, Optimal control of processes described by integral equations,, SIAM J. on Control, 7 (1969), 324. Google Scholar

show all references

References:
[1]

V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal Control,, (Translated from Russian). Consultants Bureau. New York etc., (1987). doi: 10.1007/978-1-4615-7551-1. Google Scholar

[2]

V. L. Bakke, A maximum principle for an optimal control problem with integral constraints,, JOTA, 13 (1974), 32. doi: 10.1007/BF00935608. Google Scholar

[3]

J. F. Bonnans and C. De La Vega, Optimal control of state constrained integral equations,, Set-Valued Var. Analysis, 18 (2010), 307. doi: 10.1007/s11228-010-0154-8. Google Scholar

[4]

J. F. Bonnans, C. De La Vega and X. Dupuis, First and second order optimality conditions for optimal control problems of state constrained integral equations,, JOTA, 159 (2013), 1. doi: 10.1007/s10957-013-0299-3. Google Scholar

[5]

D. A. Carlson, An elementary proof of the maximum principle for optimal control problems governed by a Volterra integral equation,, JOTA, 54 (1987), 43. doi: 10.1007/BF00940404. Google Scholar

[6]

A. V. Dmitruk and A. M. Kaganovich, Quadratic order conditions for a weak minimum in optimal control problems with intermediate and mixed constraints,, Discrete and Continuous Dynamical Systems, 29 (2011), 523. doi: 10.3934/dcds.2011.29.523. Google Scholar

[7]

A. V. Dmitruk, A. A. Milyutin and N. P. Osmolovskii, Lyusternik's theorem and the theory of extrema,, Russian Math. Surveys, 35 (1980), 11. Google Scholar

[8]

A. V. Dmitruk and N. P. Osmolovskii, Necessary conditions for a weak minimum in optimal control problems with integral equations subject to state and mixed constraints,, SIAM J. on Control and Optimization, 52 (2014), 3437. doi: 10.1137/130921465. Google Scholar

[9]

I. V. Girsanov, Lectures on Mathematical Theory of Extremum Problems,, (Translated from Russian), (1972). Google Scholar

[10]

R. F. Hartl and S. P. Sethi, Optimal control on a class of systems with continuous lags: Dynamic programming approach and economic interpretations,, JOTA, 43 (1984), 73. doi: 10.1007/BF00934747. Google Scholar

[11]

A. D. Ioffe and V. M. Tikhomirov, Theory of Extremal Problems,, (Translated from Russian), (1979). Google Scholar

[12]

M. I. Kamien and E. Muller, Optimal control with integral state equations,, The Review of Economic Studies, 43 (1976), 469. doi: 10.2307/2297225. Google Scholar

[13]

C. De la Vega, Necessary conditions for optimal terminal time control problems governed by a Volterra integral equation,, JOTA, 130 (2006), 79. doi: 10.1007/s10957-006-9087-7. Google Scholar

[14]

V. R. Vinokurov, Optimal control of processes described by integral equations,, SIAM J. on Control, 7 (1969), 324. Google Scholar

[1]

Giovanni Bonfanti, Arrigo Cellina. The validity of the Euler-Lagrange equation. Discrete & Continuous Dynamical Systems - A, 2010, 28 (2) : 511-517. doi: 10.3934/dcds.2010.28.511

[2]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[3]

Andrei V. Dmitruk, Nikolai P. Osmolovski. Necessary conditions for a weak minimum in a general optimal control problem with integral equations on a variable time interval. Mathematical Control & Related Fields, 2017, 7 (4) : 507-535. doi: 10.3934/mcrf.2017019

[4]

Andrei V. Dmitruk, Alexander M. Kaganovich. Quadratic order conditions for an extended weak minimum in optimal control problems with intermediate and mixed constraints. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 523-545. doi: 10.3934/dcds.2011.29.523

[5]

Pengyu Chen, Xuping Zhang, Yongxiang Li. A blowup alternative result for fractional nonautonomous evolution equation of Volterra type. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1975-1992. doi: 10.3934/cpaa.2018094

[6]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[7]

David Mumford, Peter W. Michor. On Euler's equation and 'EPDiff'. Journal of Geometric Mechanics, 2013, 5 (3) : 319-344. doi: 10.3934/jgm.2013.5.319

[8]

David González-Sánchez, Onésimo Hernández-Lerma. On the Euler equation approach to discrete--time nonstationary optimal control problems. Journal of Dynamics & Games, 2014, 1 (1) : 57-78. doi: 10.3934/jdg.2014.1.57

[9]

Toshiyuki Ogawa, Takashi Okuda. Bifurcation analysis to Swift-Hohenberg equation with Steklov type boundary conditions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 273-297. doi: 10.3934/dcds.2009.25.273

[10]

Mohammad Hassan Farshbaf-Shaker, Takeshi Fukao, Noriaki Yamazaki. Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier. Conference Publications, 2015, 2015 (special) : 418-427. doi: 10.3934/proc.2015.0418

[11]

Chun-Hsiung Hsia, Xiaoming Wang. On a Burgers' type equation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (5) : 1121-1139. doi: 10.3934/dcdsb.2006.6.1121

[12]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[13]

In-Jee Jeong, Benoit Pausader. Discrete Schrödinger equation and ill-posedness for the Euler equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 281-293. doi: 10.3934/dcds.2017012

[14]

Igor Shevchenko, Barbara Kaltenbacher. Absorbing boundary conditions for the Westervelt equation. Conference Publications, 2015, 2015 (special) : 1000-1008. doi: 10.3934/proc.2015.1000

[15]

S. Huff, G. Olumolode, N. Pennington, A. Peterson. Oscillation of an Euler-Cauchy dynamic equation. Conference Publications, 2003, 2003 (Special) : 423-431. doi: 10.3934/proc.2003.2003.423

[16]

Igor Kukavica, Amjad Tuffaha. On the 2D free boundary Euler equation. Evolution Equations & Control Theory, 2012, 1 (2) : 297-314. doi: 10.3934/eect.2012.1.297

[17]

M. Petcu. Euler equation in a channel in space dimension 2 and 3. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 755-778. doi: 10.3934/dcds.2005.13.755

[18]

Terence Tao. On the universality of the incompressible Euler equation on compact manifolds. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1553-1565. doi: 10.3934/dcds.2018064

[19]

Jean-Daniel Djida, Juan J. Nieto, Iván Area. Nonlocal time-porous medium equation: Weak solutions and finite speed of propagation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4031-4053. doi: 10.3934/dcdsb.2019049

[20]

Bo Li, Hongwei Lou. Cesari-type conditions for semilinear elliptic equation with leading term containing controls. Mathematical Control & Related Fields, 2011, 1 (1) : 41-59. doi: 10.3934/mcrf.2011.1.41

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]