August  2015, 35(8): 3503-3531. doi: 10.3934/dcds.2015.35.3503

Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source

1. 

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu 611731

Received  November 2014 Revised  December 2014 Published  February 2015

In this paper, we investigate the quasilinear Keller-Segel equations (q-K-S): \[ \left\{ \begin{split} &n_t=\nabla\cdot\big(D(n)\nabla n\big)-\nabla\cdot\big(\chi(n)\nabla c\big)+\mathcal{R}(n), \qquad x\in\Omega,\,t>0,\\ &\varrho c_t=\Delta c-c+n, \qquad x\in\Omega,\,t>0, \end{split} \right. \] under homogeneous Neumann boundary conditions in a bounded domain $\Omega\subset\mathbb{R}^N$. For both $\varrho=0$ (parabolic-elliptic case) and $\varrho>0$ (parabolic-parabolic case), we will show the global-in-time existence and uniform-in-time boundedness of solutions to equations (q-K-S) with both non-degenerate and degenerate diffusions on the non-convex domain $\Omega$, which provide a supplement to the dichotomy boundedness vs. blow-up in parabolic-elliptic/parabolic-parabolic chemotaxis equations with degenerate diffusion, nonlinear sensitivity and logistic source. In particular, we improve the recent results obtained by Wang-Li-Mu (2014, Disc. Cont. Dyn. Syst.) and Wang-Mu-Zheng (2014, J. Differential Equations).
Citation: Xie Li, Zhaoyin Xiang. Boundedness in quasilinear Keller-Segel equations with nonlinear sensitivity and logistic source. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3503-3531. doi: 10.3934/dcds.2015.35.3503
References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113. Google Scholar

[2]

K. Baghaei and M. Hesaaraki, Global existence and boundedness of classical solutions for a chemotaxis model with logistic source,, C. R. Acad. Sci. Paris, 351 (2013), 585. doi: 10.1016/j.crma.2013.07.027. Google Scholar

[3]

J. Burczak, T. Cieslak and C. Morales-Rodrigo, Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller-Segel system,, Nonlinear Anal., 75 (2012), 5215. doi: 10.1016/j.na.2012.04.038. Google Scholar

[4]

X. Cao and S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source,, Math. Methods Appl. Sci., 37 (2014), 2326. doi: 10.1002/mma.2992. Google Scholar

[5]

T. Cieslak, Quasilinear nonuniformly parabolic system modelling chemotaxis,, J. Math. Anal. Appl., 326 (2007), 1410. doi: 10.1016/j.jmaa.2006.03.080. Google Scholar

[6]

T. Cieslak and P. Laurencot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. I. H. Poincaré AN, 27 (2010), 437. doi: 10.1016/j.anihpc.2009.11.016. Google Scholar

[7]

T. Cieslak and C. Stinner, Finite-time blow up and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832. doi: 10.1016/j.jde.2012.01.045. Google Scholar

[8]

T. Cieslak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, Acta Appl. Math., 129 (2014), 135. doi: 10.1007/s10440-013-9832-5. Google Scholar

[9]

T. Cieslak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057. doi: 10.1088/0951-7715/21/5/009. Google Scholar

[10]

A. Friedman, Partial Differential Equations,, Holt, (1969). Google Scholar

[11]

H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations,, in Harmonic Analysis and Nonlinear Partial Differential Equations, 26 (2011), 159. Google Scholar

[12]

D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations,, European Mathematical Society, (2008). Google Scholar

[13]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633. Google Scholar

[14]

T. Hillen and K. J. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding,, Adv. Appl. Math., 26 (2001), 280. doi: 10.1006/aama.2001.0721. Google Scholar

[15]

T. Hillen and K. Painter, Volume-filling and quorum-sensing in models for chemosensitive movement,, Can. Appl. Math. Q., 10 (2002), 501. Google Scholar

[16]

T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[17]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[18]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions,, European J. Appl. Math., 12 (2001), 159. doi: 10.1017/S0956792501004363. Google Scholar

[19]

S. Ishida, T. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, Math. Methods Appl. Sci., 36 (2013), 745. doi: 10.1002/mma.2622. Google Scholar

[20]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993. doi: 10.1016/j.jde.2014.01.028. Google Scholar

[21]

W. Jager and S. Luckhaus, On explosions of solutions to a system of partial differential equations modeling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[22]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[23]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system,, Ann. I. H. Poincaré AN, 31 (2014), 851. doi: 10.1016/j.anihpc.2013.07.007. Google Scholar

[24]

C. Mu, L. Wang, P. Zheng and Q. Zhang, Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system,, Nonlinear Anal.-Real World Appl., 14 (2013), 1634. doi: 10.1016/j.nonrwa.2012.10.022. Google Scholar

[25]

T. Nagai, Blow-up of radially symmetric solutions of a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581. Google Scholar

[26]

E. Nakaguchi and K. Osaki, Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation,, Nonlinear Anal., 74 (2011), 286. doi: 10.1016/j.na.2010.08.044. Google Scholar

[27]

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology,, J. Theoret. Biol., 42 (1973), 63. doi: 10.1016/0022-5193(73)90149-5. Google Scholar

[28]

L. Nirenberg, An extended interpolation inequality,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 733. Google Scholar

[29]

T. Senba, Blowup behavior of radial solutions to Jager-Luckhaus system in high dimensional domains,, Funkcialaj Ekvacioj, 48 (2005), 247. doi: 10.1619/fesi.48.247. Google Scholar

[30]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time,, Methods Appl. Anal., 8 (2001), 349. Google Scholar

[31]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[32]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520. doi: 10.1016/j.jde.2011.07.010. Google Scholar

[33]

Y. Tao and Z.A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,, Math. Models Methods Appl. Sci., 23 (2013), 1. doi: 10.1142/S0218202512500443. Google Scholar

[34]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849. doi: 10.1080/03605300701319003. Google Scholar

[35]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, 68 (1997). Google Scholar

[36]

L. Wang, Y. Li and C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source,, Discrete and Continuous Dynamical Systems, 34 (2014), 789. doi: 10.3934/dcds.2014.34.789. Google Scholar

[37]

L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source,, J. Differential Equations, 256 (2014), 1847. doi: 10.1016/j.jde.2013.12.007. Google Scholar

[38]

Z. A. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model,, Chaos, 17 (2007). doi: 10.1063/1.2766864. Google Scholar

[39]

Z. A. Wang, On chemotaxis models with cell population interactions,, Math. Model. Nat. Phenom., 5 (2010), 173. doi: 10.1051/mmnp/20105311. Google Scholar

[40]

Z. A. Wang, M. Winkler and D. Wrzosek, Singularity formation in chemotaxis systems with volume-filling effect,, Nonlinearity, 24 (2011), 3279. doi: 10.1088/0951-7715/24/12/001. Google Scholar

[41]

Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion,, SIAM J. Math. Anal., 44 (2012), 3502. doi: 10.1137/110853972. Google Scholar

[42]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,, Comm. Partial Differential Equations, 35 (2010), 1516. doi: 10.1080/03605300903473426. Google Scholar

[43]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties,, J. Math. Anal. Appl., 348 (2008), 708. doi: 10.1016/j.jmaa.2008.07.071. Google Scholar

[44]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[45]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12. doi: 10.1002/mma.1146. Google Scholar

[46]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[47]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044. doi: 10.1016/j.na.2009.07.045. Google Scholar

[48]

D. Wrzosek, Global attractor for a chemotaxis model with prevention of over-crowding,, Nonlinear Anal., 59 (2004), 1293. doi: 10.1016/j.na.2004.08.015. Google Scholar

show all references

References:
[1]

N. D. Alikakos, $L^p$ bounds of solutions of reaction-diffusion equations,, Comm. Partial Differential Equations, 4 (1979), 827. doi: 10.1080/03605307908820113. Google Scholar

[2]

K. Baghaei and M. Hesaaraki, Global existence and boundedness of classical solutions for a chemotaxis model with logistic source,, C. R. Acad. Sci. Paris, 351 (2013), 585. doi: 10.1016/j.crma.2013.07.027. Google Scholar

[3]

J. Burczak, T. Cieslak and C. Morales-Rodrigo, Global existence vs. blow-up in a fully parabolic quasilinear 1D Keller-Segel system,, Nonlinear Anal., 75 (2012), 5215. doi: 10.1016/j.na.2012.04.038. Google Scholar

[4]

X. Cao and S. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source,, Math. Methods Appl. Sci., 37 (2014), 2326. doi: 10.1002/mma.2992. Google Scholar

[5]

T. Cieslak, Quasilinear nonuniformly parabolic system modelling chemotaxis,, J. Math. Anal. Appl., 326 (2007), 1410. doi: 10.1016/j.jmaa.2006.03.080. Google Scholar

[6]

T. Cieslak and P. Laurencot, Finite time blow-up for a one-dimensional quasilinear parabolic-parabolic chemotaxis system,, Ann. I. H. Poincaré AN, 27 (2010), 437. doi: 10.1016/j.anihpc.2009.11.016. Google Scholar

[7]

T. Cieslak and C. Stinner, Finite-time blow up and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832. doi: 10.1016/j.jde.2012.01.045. Google Scholar

[8]

T. Cieslak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, Acta Appl. Math., 129 (2014), 135. doi: 10.1007/s10440-013-9832-5. Google Scholar

[9]

T. Cieslak and M. Winkler, Finite-time blow-up in a quasilinear system of chemotaxis,, Nonlinearity, 21 (2008), 1057. doi: 10.1088/0951-7715/21/5/009. Google Scholar

[10]

A. Friedman, Partial Differential Equations,, Holt, (1969). Google Scholar

[11]

H. Hajaiej, L. Molinet, T. Ozawa and B. Wang, Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations,, in Harmonic Analysis and Nonlinear Partial Differential Equations, 26 (2011), 159. Google Scholar

[12]

D. D. Haroske and H. Triebel, Distributions, Sobolev Spaces, Elliptic Equations,, European Mathematical Society, (2008). Google Scholar

[13]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633. Google Scholar

[14]

T. Hillen and K. J. Painter, Global existence for a parabolic chemotaxis model with prevention of overcrowding,, Adv. Appl. Math., 26 (2001), 280. doi: 10.1006/aama.2001.0721. Google Scholar

[15]

T. Hillen and K. Painter, Volume-filling and quorum-sensing in models for chemosensitive movement,, Can. Appl. Math. Q., 10 (2002), 501. Google Scholar

[16]

T. Hillen and K. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183. doi: 10.1007/s00285-008-0201-3. Google Scholar

[17]

D. Horstmann and M. Winkler, Boundedness vs. blow-up in a chemotaxis system,, J. Differential Equations, 215 (2005), 52. doi: 10.1016/j.jde.2004.10.022. Google Scholar

[18]

D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions,, European J. Appl. Math., 12 (2001), 159. doi: 10.1017/S0956792501004363. Google Scholar

[19]

S. Ishida, T. Ono and T. Yokota, Possibility of the existence of blow-up solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, Math. Methods Appl. Sci., 36 (2013), 745. doi: 10.1002/mma.2622. Google Scholar

[20]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993. doi: 10.1016/j.jde.2014.01.028. Google Scholar

[21]

W. Jager and S. Luckhaus, On explosions of solutions to a system of partial differential equations modeling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. doi: 10.1090/S0002-9947-1992-1046835-6. Google Scholar

[22]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399. doi: 10.1016/0022-5193(70)90092-5. Google Scholar

[23]

N. Mizoguchi and P. Souplet, Nondegeneracy of blow-up points for the parabolic Keller-Segel system,, Ann. I. H. Poincaré AN, 31 (2014), 851. doi: 10.1016/j.anihpc.2013.07.007. Google Scholar

[24]

C. Mu, L. Wang, P. Zheng and Q. Zhang, Global existence and boundedness of classical solutions to a parabolic-parabolic chemotaxis system,, Nonlinear Anal.-Real World Appl., 14 (2013), 1634. doi: 10.1016/j.nonrwa.2012.10.022. Google Scholar

[25]

T. Nagai, Blow-up of radially symmetric solutions of a chemotaxis system,, Adv. Math. Sci. Appl., 5 (1995), 581. Google Scholar

[26]

E. Nakaguchi and K. Osaki, Global existence of solutions to a parabolic-parabolic system for chemotaxis with weak degradation,, Nonlinear Anal., 74 (2011), 286. doi: 10.1016/j.na.2010.08.044. Google Scholar

[27]

V. Nanjundiah, Chemotaxis, signal relaying and aggregation morphology,, J. Theoret. Biol., 42 (1973), 63. doi: 10.1016/0022-5193(73)90149-5. Google Scholar

[28]

L. Nirenberg, An extended interpolation inequality,, Ann. Sc. Norm. Super. Pisa Cl. Sci., 20 (1966), 733. Google Scholar

[29]

T. Senba, Blowup behavior of radial solutions to Jager-Luckhaus system in high dimensional domains,, Funkcialaj Ekvacioj, 48 (2005), 247. doi: 10.1619/fesi.48.247. Google Scholar

[30]

T. Senba and T. Suzuki, Parabolic system of chemotaxis: Blowup in a finite and the infinite time,, Methods Appl. Anal., 8 (2001), 349. Google Scholar

[31]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692. doi: 10.1016/j.jde.2011.08.019. Google Scholar

[32]

Y. Tao and M. Winkler, Eventual smoothness and stabilization of large-data solutions in a three-dimensional chemotaxis system with consumption of chemoattractant,, J. Differential Equations, 252 (2012), 2520. doi: 10.1016/j.jde.2011.07.010. Google Scholar

[33]

Y. Tao and Z.A. Wang, Competing effects of attraction vs. repulsion in chemotaxis,, Math. Models Methods Appl. Sci., 23 (2013), 1. doi: 10.1142/S0218202512500443. Google Scholar

[34]

J. I. Tello and M. Winkler, A chemotaxis system with logistic source,, Comm. Partial Differential Equations, 32 (2007), 849. doi: 10.1080/03605300701319003. Google Scholar

[35]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, $2^{nd}$ edition, 68 (1997). Google Scholar

[36]

L. Wang, Y. Li and C. Mu, Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source,, Discrete and Continuous Dynamical Systems, 34 (2014), 789. doi: 10.3934/dcds.2014.34.789. Google Scholar

[37]

L. Wang, C. Mu and P. Zheng, On a quasilinear parabolic-elliptic chemotaxis system with logistic source,, J. Differential Equations, 256 (2014), 1847. doi: 10.1016/j.jde.2013.12.007. Google Scholar

[38]

Z. A. Wang and T. Hillen, Classical solutions and pattern formation for a volume filling chemotaxis model,, Chaos, 17 (2007). doi: 10.1063/1.2766864. Google Scholar

[39]

Z. A. Wang, On chemotaxis models with cell population interactions,, Math. Model. Nat. Phenom., 5 (2010), 173. doi: 10.1051/mmnp/20105311. Google Scholar

[40]

Z. A. Wang, M. Winkler and D. Wrzosek, Singularity formation in chemotaxis systems with volume-filling effect,, Nonlinearity, 24 (2011), 3279. doi: 10.1088/0951-7715/24/12/001. Google Scholar

[41]

Z. A. Wang, M. Winkler and D. Wrzosek, Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume-filling effect and degenerate diffusion,, SIAM J. Math. Anal., 44 (2012), 3502. doi: 10.1137/110853972. Google Scholar

[42]

M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source,, Comm. Partial Differential Equations, 35 (2010), 1516. doi: 10.1080/03605300903473426. Google Scholar

[43]

M. Winkler, Chemotaxis with logistic source: Very weak global solutions and their boundedness properties,, J. Math. Anal. Appl., 348 (2008), 708. doi: 10.1016/j.jmaa.2008.07.071. Google Scholar

[44]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748. doi: 10.1016/j.matpur.2013.01.020. Google Scholar

[45]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12. doi: 10.1002/mma.1146. Google Scholar

[46]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889. doi: 10.1016/j.jde.2010.02.008. Google Scholar

[47]

M. Winkler and K. C. Djie, Boundedness and finite-time collapse in a chemotaxis system with volume-filling effect,, Nonlinear Anal., 72 (2010), 1044. doi: 10.1016/j.na.2009.07.045. Google Scholar

[48]

D. Wrzosek, Global attractor for a chemotaxis model with prevention of over-crowding,, Nonlinear Anal., 59 (2004), 1293. doi: 10.1016/j.na.2004.08.015. Google Scholar

[1]

Kentarou Fujie, Takasi Senba. Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 81-102. doi: 10.3934/dcdsb.2016.21.81

[2]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[3]

Tobias Black. Global generalized solutions to a parabolic-elliptic Keller-Segel system with singular sensitivity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 119-137. doi: 10.3934/dcdss.2020007

[4]

Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117

[5]

Mengyao Ding, Sining Zheng. $ L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295

[6]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[7]

Wenting Cong, Jian-Guo Liu. Uniform $L^{∞}$ boundedness for a degenerate parabolic-parabolic Keller-Segel model. Discrete & Continuous Dynamical Systems - B, 2017, 22 (2) : 307-338. doi: 10.3934/dcdsb.2017015

[8]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 233-255. doi: 10.3934/dcdss.2020013

[9]

Sachiko Ishida. $L^\infty$-decay property for quasilinear degenerate parabolic-elliptic Keller-Segel systems. Conference Publications, 2013, 2013 (special) : 335-344. doi: 10.3934/proc.2013.2013.335

[10]

Mengyao Ding, Xiangdong Zhao. $ L^\sigma $-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5297-5315. doi: 10.3934/dcdsb.2019059

[11]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[12]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[13]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[14]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[15]

Sachiko Ishida, Tomomi Yokota. Boundedness in a quasilinear fully parabolic Keller-Segel system via maximal Sobolev regularity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 211-232. doi: 10.3934/dcdss.2020012

[16]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[17]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[18]

Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635

[19]

Luca Battaglia. A general existence result for stationary solutions to the Keller-Segel system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 905-926. doi: 10.3934/dcds.2019038

[20]

Chao Deng, Tong Li. Global existence and large time behavior of a 2D Keller-Segel system in logarithmic Lebesgue spaces. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 183-195. doi: 10.3934/dcdsb.2018093

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (16)
  • HTML views (0)
  • Cited by (23)

Other articles
by authors

[Back to Top]