• Previous Article
    Emergence of phase-locked states for the Winfree model in a large coupling regime
  • DCDS Home
  • This Issue
  • Next Article
    Global existence and boundedness for chemotaxis-Navier-Stokes systems with position-dependent sensitivity in 2D bounded domains
August  2015, 35(8): 3437-3461. doi: 10.3934/dcds.2015.35.3437

Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows

1. 

Department of Mathematics, City University of Hong Kong, Hong Kong, China

2. 

School of Mathematical Sciences, Shanghai Key Laboratory for Contemporary Applied Mathematics, Fudan University, Han Dan Road 220, 200433 Shanghai

Received  September 2014 Revised  November 2014 Published  February 2015

We consider the Cauchy problem for incompressible viscoelastic fluids in the whole space $\mathbb{R}^d$ ($d=2,3$). By introducing a new decomposition via Helmholtz's projections, we first provide an alternative proof on the existence of global smooth solutions near equilibrium. Then under additional assumptions that the initial data belong to $L^1$ and their Fourier modes do not degenerate at low frequencies, we obtain the optimal $L^2$ decay rates for the global smooth solutions and their spatial derivatives. At last, we establish the weak-strong uniqueness property in the class of finite energy weak solutions for the incompressible viscoelastic system.
Citation: Xianpeng Hu, Hao Wu. Long-time behavior and weak-strong uniqueness for incompressible viscoelastic flows. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3437-3461. doi: 10.3934/dcds.2015.35.3437
References:
[1]

Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions,, Comm. Partial Differential Equations, 31 (2006), 1793. doi: 10.1080/03605300600858960. Google Scholar

[2]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations,, Invent. Math., 141 (2000), 579. doi: 10.1007/s002220000078. Google Scholar

[3]

Y. Du, C. Liu and Q.-T. Zhang, Blow-up criterion for compressible visco-elasticity equations in three dimensional space,, Comm. Math. Sci., 12 (2014), 473. doi: 10.4310/CMS.2014.v12.n3.a4. Google Scholar

[4]

A. C. Eringen, E. S. Suhubi, Elastodynamics. Vol. I. Finite motions,, Academic Press, (1974). Google Scholar

[5]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186. doi: 10.1016/0022-0396(86)90096-3. Google Scholar

[6]

X.-P. Hu and R. Hynd, A blowup criterion for ideal viscoelastic flow,, J. Math. Fluid Mech., 15 (2013), 431. doi: 10.1007/s00021-012-0124-z. Google Scholar

[7]

X.-P. Hu and F.-H. Lin, Global solution to two dimensional incompressible viscoelastic fluid with discontinuous data,, preprint, (). Google Scholar

[8]

X.-P. Hu and D.-H. Wang, Local strong solution to the compressible viscoelastic flow with large data,, J. Differential Equations, 249 (2010), 1179. doi: 10.1016/j.jde.2010.03.027. Google Scholar

[9]

X.-P. Hu and D.-H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, J. Differential Equations, 250 (2011), 1200. doi: 10.1016/j.jde.2010.10.017. Google Scholar

[10]

X.-P. Hu and D.-H. Wang, Strong solutions to the three-dimensional compressible viscoelastic fluids,, J. Differential Equations, 252 (2012), 4027. doi: 10.1016/j.jde.2011.11.021. Google Scholar

[11]

X.-P. Hu and G.-C. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows,, SIAM J. Math. Anal., 45 (2013), 2815. doi: 10.1137/120892350. Google Scholar

[12]

R. Kajikiya and T. Miyakawa, On $L^2$ decay of weak solutions of the Navier-Stokes Equations in $R^n$,, Math. Z., 192 (1986), 135. doi: 10.1007/BF01162027. Google Scholar

[13]

T. Kato, Strong $L^p$ solutions of Navier-Stokes equation in $R^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471. doi: 10.1007/BF01174182. Google Scholar

[14]

H. Kozono and H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations,, Analysis, 16 (1996), 255. doi: 10.1524/anly.1996.16.3.255. Google Scholar

[15]

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbbR^3$,, J. Differential Equations, 184 (2002), 587. doi: 10.1006/jdeq.2002.4158. Google Scholar

[16]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$,, Comm. Math. Phys., 200 (1999), 621. doi: 10.1007/s002200050543. Google Scholar

[17]

R.-G. Larson, The Structure and Rheology of Complex Fluids,, Oxford University Press, (1995). Google Scholar

[18]

Z. Lei, On 2D viscoelasticity with small strain,, Arch. Ration. Mech. Anal., 198 (2010), 13. doi: 10.1007/s00205-010-0346-2. Google Scholar

[19]

Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain,, Commun. Math. Sci., 5 (2007), 595. doi: 10.4310/CMS.2007.v5.n3.a5. Google Scholar

[20]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Ration. Mech. Anal., 188 (2008), 371. doi: 10.1007/s00205-007-0089-x. Google Scholar

[21]

Z. Lei and Y. Zhou, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit,, SIAM J. Math. Anal., 37 (2005), 797. doi: 10.1137/040618813. Google Scholar

[22]

H.-L. Li, A. Matsumura and G.-J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^3$,, Arch. Ration. Mech. Anal., 196 (2010), 681. doi: 10.1007/s00205-009-0255-4. Google Scholar

[23]

H.-L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $\mathbbR^3$,, Math. Methods Appl. Sci., 34 (2011), 670. doi: 10.1002/mma.1391. Google Scholar

[24]

F.-H. Lin, Some analytical issues for elastic complex fluids,, Comm. Pure Appl. Math., 65 (2012), 893. doi: 10.1002/cpa.21402. Google Scholar

[25]

F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Comm. Pure Appl. Math., 58 (2005), 1437. doi: 10.1002/cpa.20074. Google Scholar

[26]

F.-H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Comm. Pure Appl. Math., 61 (2008), 539. doi: 10.1002/cpa.20219. Google Scholar

[27]

P.-L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows,, Chin. Ann. Math. Ser. B, 21 (2000), 131. doi: 10.1142/S0252959900000170. Google Scholar

[28]

C. Liu and N.-J. Walkington, An Eulerian description of fluids containing visco-elastic particles,, Arch. Ration. Mech. Anal., 159 (2001), 229. doi: 10.1007/s002050100158. Google Scholar

[29]

G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173. doi: 10.1007/BF02410664. Google Scholar

[30]

J.-Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluids system,, Nonlinear Anal., 72 (2010), 3222. doi: 10.1016/j.na.2009.12.022. Google Scholar

[31]

J.-Z. Qian, Initial boundary value problems for the compressible viscoelastic fluid,, J. Differential Equations, 250 (2011), 848. doi: 10.1016/j.jde.2010.07.026. Google Scholar

[32]

J.-Z. Qian and Z.-F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium,, Arch. Ration. Mech. Anal., 198 (2010), 835. doi: 10.1007/s00205-010-0351-5. Google Scholar

[33]

M. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 88 (1985), 209. doi: 10.1007/BF00752111. Google Scholar

[34]

M. Schonbek, Large time behavior of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733. doi: 10.1080/03605308608820443. Google Scholar

[35]

J. Serrin, On the interior regularity of weak solutions of Navier-Stokes equations,, Arch. Ration. Mech. Anal., 9 (1962), 187. Google Scholar

[36]

Z. Tan and G.-C. Wu, Large time behavior of solutions for compressible Euler equations with damping in $\mathbbR^3$,, J. Differential Equations, 252 (2012), 1546. doi: 10.1016/j.jde.2011.09.003. Google Scholar

[37]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Studies in Mathematics and its Applications, (1977). Google Scholar

[38]

T. Zhang and D.-Y. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p$ framework,, SIAM J. Math. Anal., 44 (2012), 2266. doi: 10.1137/110851742. Google Scholar

[39]

S. Zheng, Nonlinear Evolution Equations,, Pitman series Monographs and Survey in Pure and Applied Mathematics, 133 (2004). doi: 10.1201/9780203492222. Google Scholar

show all references

References:
[1]

Y. Chen and P. Zhang, The global existence of small solutions to the incompressible viscoelastic fluid system in 2 and 3 space dimensions,, Comm. Partial Differential Equations, 31 (2006), 1793. doi: 10.1080/03605300600858960. Google Scholar

[2]

R. Danchin, Global existence in critical spaces for compressible Navier-Stokes equations,, Invent. Math., 141 (2000), 579. doi: 10.1007/s002220000078. Google Scholar

[3]

Y. Du, C. Liu and Q.-T. Zhang, Blow-up criterion for compressible visco-elasticity equations in three dimensional space,, Comm. Math. Sci., 12 (2014), 473. doi: 10.4310/CMS.2014.v12.n3.a4. Google Scholar

[4]

A. C. Eringen, E. S. Suhubi, Elastodynamics. Vol. I. Finite motions,, Academic Press, (1974). Google Scholar

[5]

Y. Giga, Solutions for semilinear parabolic equations in $L^p$ and regularity of weak solutions of the Navier-Stokes system,, J. Differential Equations, 62 (1986), 186. doi: 10.1016/0022-0396(86)90096-3. Google Scholar

[6]

X.-P. Hu and R. Hynd, A blowup criterion for ideal viscoelastic flow,, J. Math. Fluid Mech., 15 (2013), 431. doi: 10.1007/s00021-012-0124-z. Google Scholar

[7]

X.-P. Hu and F.-H. Lin, Global solution to two dimensional incompressible viscoelastic fluid with discontinuous data,, preprint, (). Google Scholar

[8]

X.-P. Hu and D.-H. Wang, Local strong solution to the compressible viscoelastic flow with large data,, J. Differential Equations, 249 (2010), 1179. doi: 10.1016/j.jde.2010.03.027. Google Scholar

[9]

X.-P. Hu and D.-H. Wang, Global existence for the multi-dimensional compressible viscoelastic flows,, J. Differential Equations, 250 (2011), 1200. doi: 10.1016/j.jde.2010.10.017. Google Scholar

[10]

X.-P. Hu and D.-H. Wang, Strong solutions to the three-dimensional compressible viscoelastic fluids,, J. Differential Equations, 252 (2012), 4027. doi: 10.1016/j.jde.2011.11.021. Google Scholar

[11]

X.-P. Hu and G.-C. Wu, Global existence and optimal decay rates for three-dimensional compressible viscoelastic flows,, SIAM J. Math. Anal., 45 (2013), 2815. doi: 10.1137/120892350. Google Scholar

[12]

R. Kajikiya and T. Miyakawa, On $L^2$ decay of weak solutions of the Navier-Stokes Equations in $R^n$,, Math. Z., 192 (1986), 135. doi: 10.1007/BF01162027. Google Scholar

[13]

T. Kato, Strong $L^p$ solutions of Navier-Stokes equation in $R^m$, with applications to weak solutions,, Math. Z., 187 (1984), 471. doi: 10.1007/BF01174182. Google Scholar

[14]

H. Kozono and H. Sohr, Remark on uniqueness of weak solutions to the Navier-Stokes equations,, Analysis, 16 (1996), 255. doi: 10.1524/anly.1996.16.3.255. Google Scholar

[15]

T. Kobayashi, Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in $\mathbbR^3$,, J. Differential Equations, 184 (2002), 587. doi: 10.1006/jdeq.2002.4158. Google Scholar

[16]

T. Kobayashi and Y. Shibata, Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in $\mathbbR^3$,, Comm. Math. Phys., 200 (1999), 621. doi: 10.1007/s002200050543. Google Scholar

[17]

R.-G. Larson, The Structure and Rheology of Complex Fluids,, Oxford University Press, (1995). Google Scholar

[18]

Z. Lei, On 2D viscoelasticity with small strain,, Arch. Ration. Mech. Anal., 198 (2010), 13. doi: 10.1007/s00205-010-0346-2. Google Scholar

[19]

Z. Lei, C. Liu and Y. Zhou, Global existence for a 2D incompressible viscoelastic model with small strain,, Commun. Math. Sci., 5 (2007), 595. doi: 10.4310/CMS.2007.v5.n3.a5. Google Scholar

[20]

Z. Lei, C. Liu and Y. Zhou, Global solutions for incompressible viscoelastic fluids,, Arch. Ration. Mech. Anal., 188 (2008), 371. doi: 10.1007/s00205-007-0089-x. Google Scholar

[21]

Z. Lei and Y. Zhou, Global existence of classical solutions for 2D Oldroyd model via the incompressible limit,, SIAM J. Math. Anal., 37 (2005), 797. doi: 10.1137/040618813. Google Scholar

[22]

H.-L. Li, A. Matsumura and G.-J. Zhang, Optimal decay rate of the compressible Navier-Stokes-Poisson system in $\mathbbR^3$,, Arch. Ration. Mech. Anal., 196 (2010), 681. doi: 10.1007/s00205-009-0255-4. Google Scholar

[23]

H.-L. Li and T. Zhang, Large time behavior of isentropic compressible Navier-Stokes system in $\mathbbR^3$,, Math. Methods Appl. Sci., 34 (2011), 670. doi: 10.1002/mma.1391. Google Scholar

[24]

F.-H. Lin, Some analytical issues for elastic complex fluids,, Comm. Pure Appl. Math., 65 (2012), 893. doi: 10.1002/cpa.21402. Google Scholar

[25]

F.-H. Lin, C. Liu and P. Zhang, On hydrodynamics of viscoelastic fluids,, Comm. Pure Appl. Math., 58 (2005), 1437. doi: 10.1002/cpa.20074. Google Scholar

[26]

F.-H. Lin and P. Zhang, On the initial-boundary value problem of the incompressible viscoelastic fluid system,, Comm. Pure Appl. Math., 61 (2008), 539. doi: 10.1002/cpa.20219. Google Scholar

[27]

P.-L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows,, Chin. Ann. Math. Ser. B, 21 (2000), 131. doi: 10.1142/S0252959900000170. Google Scholar

[28]

C. Liu and N.-J. Walkington, An Eulerian description of fluids containing visco-elastic particles,, Arch. Ration. Mech. Anal., 159 (2001), 229. doi: 10.1007/s002050100158. Google Scholar

[29]

G. Prodi, Un teorema di unicitá per le equazioni di Navier-Stokes,, Ann. Mat. Pura Appl., 48 (1959), 173. doi: 10.1007/BF02410664. Google Scholar

[30]

J.-Z. Qian, Well-posedness in critical spaces for incompressible viscoelastic fluids system,, Nonlinear Anal., 72 (2010), 3222. doi: 10.1016/j.na.2009.12.022. Google Scholar

[31]

J.-Z. Qian, Initial boundary value problems for the compressible viscoelastic fluid,, J. Differential Equations, 250 (2011), 848. doi: 10.1016/j.jde.2010.07.026. Google Scholar

[32]

J.-Z. Qian and Z.-F. Zhang, Global well-posedness for compressible viscoelastic fluids near equilibrium,, Arch. Ration. Mech. Anal., 198 (2010), 835. doi: 10.1007/s00205-010-0351-5. Google Scholar

[33]

M. Schonbek, $L^2$ decay for weak solutions of the Navier-Stokes equations,, Arch. Rational Mech. Anal., 88 (1985), 209. doi: 10.1007/BF00752111. Google Scholar

[34]

M. Schonbek, Large time behavior of solutions to the Navier-Stokes equations,, Comm. Partial Differential Equations, 11 (1986), 733. doi: 10.1080/03605308608820443. Google Scholar

[35]

J. Serrin, On the interior regularity of weak solutions of Navier-Stokes equations,, Arch. Ration. Mech. Anal., 9 (1962), 187. Google Scholar

[36]

Z. Tan and G.-C. Wu, Large time behavior of solutions for compressible Euler equations with damping in $\mathbbR^3$,, J. Differential Equations, 252 (2012), 1546. doi: 10.1016/j.jde.2011.09.003. Google Scholar

[37]

R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis,, Studies in Mathematics and its Applications, (1977). Google Scholar

[38]

T. Zhang and D.-Y. Fang, Global existence of strong solution for equations related to the incompressible viscoelastic fluids in the critical $L^p$ framework,, SIAM J. Math. Anal., 44 (2012), 2266. doi: 10.1137/110851742. Google Scholar

[39]

S. Zheng, Nonlinear Evolution Equations,, Pitman series Monographs and Survey in Pure and Applied Mathematics, 133 (2004). doi: 10.1201/9780203492222. Google Scholar

[1]

Tong Li, Kun Zhao. Global existence and long-time behavior of entropy weak solutions to a quasilinear hyperbolic blood flow model. Networks & Heterogeneous Media, 2011, 6 (4) : 625-646. doi: 10.3934/nhm.2011.6.625

[2]

Takeshi Taniguchi. The exponential behavior of Navier-Stokes equations with time delay external force. Discrete & Continuous Dynamical Systems - A, 2005, 12 (5) : 997-1018. doi: 10.3934/dcds.2005.12.997

[3]

Etienne Emmrich, Robert Lasarzik. Weak-strong uniqueness for the general Ericksen—Leslie system in three dimensions. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4617-4635. doi: 10.3934/dcds.2018202

[4]

G. Deugoué, T. Tachim Medjo. The Stochastic 3D globally modified Navier-Stokes equations: Existence, uniqueness and asymptotic behavior. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2593-2621. doi: 10.3934/cpaa.2018123

[5]

Wojciech M. Zajączkowski. Long time existence of regular solutions to non-homogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1427-1455. doi: 10.3934/dcdss.2013.6.1427

[6]

Reinhard Farwig, Yasushi Taniuchi. Uniqueness of backward asymptotically almost periodic-in-time solutions to Navier-Stokes equations in unbounded domains. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1215-1224. doi: 10.3934/dcdss.2013.6.1215

[7]

Giovanni P. Galdi. Existence and uniqueness of time-periodic solutions to the Navier-Stokes equations in the whole plane. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1237-1257. doi: 10.3934/dcdss.2013.6.1237

[8]

Chang Zhang, Fang Li, Jinqiao Duan. Long-time behavior of a class of nonlocal partial differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 749-763. doi: 10.3934/dcdsb.2018041

[9]

Hongtao Li, Shan Ma, Chengkui Zhong. Long-time behavior for a class of degenerate parabolic equations. Discrete & Continuous Dynamical Systems - A, 2014, 34 (7) : 2873-2892. doi: 10.3934/dcds.2014.34.2873

[10]

Pavel I. Plotnikov, Jan Sokolowski. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations. Evolution Equations & Control Theory, 2013, 2 (3) : 495-516. doi: 10.3934/eect.2013.2.495

[11]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[12]

Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure & Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907

[13]

Pierluigi Colli, Gianni Gilardi, Philippe Laurençot, Amy Novick-Cohen. Uniqueness and long-time behavior for the conserved phase-field system with memory. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 375-390. doi: 10.3934/dcds.1999.5.375

[14]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[15]

Chérif Amrouche, María Ángeles Rodríguez-Bellido. On the very weak solution for the Oseen and Navier-Stokes equations. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 159-183. doi: 10.3934/dcdss.2010.3.159

[16]

Xinguang Yang, Baowei Feng, Thales Maier de Souza, Taige Wang. Long-time dynamics for a non-autonomous Navier-Stokes-Voigt equation in Lipschitz domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 363-386. doi: 10.3934/dcdsb.2018084

[17]

Igor Chueshov, Irena Lasiecka, Justin Webster. Flow-plate interactions: Well-posedness and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2014, 7 (5) : 925-965. doi: 10.3934/dcdss.2014.7.925

[18]

Linglong Du, Haitao Wang. Pointwise wave behavior of the Navier-Stokes equations in half space. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1349-1363. doi: 10.3934/dcds.2018055

[19]

Huicheng Yin, Lin Zhang. The global existence and large time behavior of smooth compressible fluid in an infinitely expanding ball, Ⅱ: 3D Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1063-1102. doi: 10.3934/dcds.2018045

[20]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete & Continuous Dynamical Systems - A, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (7)

Other articles
by authors

[Back to Top]