• Previous Article
    A note on partially hyperbolic attractors: Entropy conjecture and SRB measures
  • DCDS Home
  • This Issue
  • Next Article
    Global regularity for the 3D axisymmetric MHD Equations with horizontal dissipation and vertical magnetic diffusion
January  2015, 35(1): 323-339. doi: 10.3934/dcds.2015.35.323

Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics

1. 

Department of Mathematics, Iowa State University, Ames, IA 50011, United States

Received  January 2014 Revised  February 2014 Published  August 2014

We investigate a class of nonlocal conservation laws with the nonlinear advection coupling both local and nonlocal mechanism, which arises in several applications such as the collective motion of cells and traffic flows. It is proved that the $C^1$ solution regularity of this class of conservation laws will persist at least for a short time. This persistency may continue as long as the solution gradient remains bounded. Based on this result, we further identify sub-thresholds for finite time shock formation in traffic flow models with Arrhenius look-ahead dynamics.
Citation: Yongki Lee, Hailiang Liu. Thresholds for shock formation in traffic flow models with Arrhenius look-ahead dynamics. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 323-339. doi: 10.3934/dcds.2015.35.323
References:
[1]

F. Betancourt, R. Burger, K. H. Karlsen and E. M. Tory, On nonlocal conservation laws modelling sedimentation,, Nonlinearity., 24 (2011), 855. doi: 10.1088/0951-7715/24/3/008. Google Scholar

[2]

M. Burger, Y. Dolak and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions,, Commun. Math. Sci., 6 (2008), 1. doi: 10.4310/CMS.2008.v6.n1.a1. Google Scholar

[3]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586. Google Scholar

[4]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Springer-Verlag, (2005). Google Scholar

[5]

A. Degasperis and M. Procesi, Asymptotic integrability,, in Symmetry and Perturbation Theory (Rome, (1998), 23. Google Scholar

[6]

Y. Dolak and C. Schmeiser, The Keller-Segel model with logistic sensitivity function and small diffusivity,, SIAM J. Appl. Math., 66 (2005), 286. doi: 10.1137/040612841. Google Scholar

[7]

S. Engelberg, H. Liu and E. Tadmor, Critical Thresholds in Euler-Poisson equations,, Indiana Univ. Math. J., 50 (2001), 109. doi: 10.1512/iumj.2001.50.2177. Google Scholar

[8]

K. Hamer, Non-linear effects on the propagation of sound waves in a radiating gas,, Quart. J. Mech. Appl. Math., 24 (1971), 155. doi: 10.1093/qjmam/24.2.155. Google Scholar

[9]

D. D. Holm and A. N. W. Hone, A class of equations with peakon and pulson solutions (with a appendix by Braden H and Byatt-Smith),, J. Nonlinear Math. Phys, 12 (2005), 380. doi: 10.2991/jnmp.2005.12.s1.31. Google Scholar

[10]

J. K. Hunter, Numerical solutions of some nonlinear dispersive wave equations,, Lect. Appl. Math, 26 (1990), 301. Google Scholar

[11]

A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics,, Netw. Heterog. Media., 4 (2009), 431. doi: 10.3934/nhm.2009.4.431. Google Scholar

[12]

G. Kynch, A theory of sedimentation,, Trans. Fraday Soc., 48 (1952), 166. doi: 10.1039/tf9524800166. Google Scholar

[13]

D. Li and T. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics,, Netw. Heterog. Media, 6 (2001), 681. doi: 10.3934/nhm.2011.6.681. Google Scholar

[14]

H. Liu, Wave breaking in a class of nonlocal dispersive wave equations,, Journal of Nonlinear Math Phys., 13 (2006), 441. doi: 10.2991/jnmp.2006.13.3.8. Google Scholar

[15]

T. Li and H. Liu, Critical thresholds in hyperbolic relaxation systems,, J. Differential Equations, 247 (2009), 33. doi: 10.1016/j.jde.2009.03.032. Google Scholar

[16]

H. Liu and E. Tadmor, Spectral dynamics of the velocity gradient field in restricted flows,, Comm. Math. Phys., 228 (2002), 435. doi: 10.1007/s002200200667. Google Scholar

[17]

H. Liu and E. Tadmor, Critical thresholds in 2D restricted Euler-Poisson equations,, SIAM J. Appl. Math., 63 (2003), 1889. doi: 10.1137/S0036139902416986. Google Scholar

[18]

M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc., 229 (1955), 317. doi: 10.1098/rspa.1955.0089. Google Scholar

[19]

H. L. Liu and E. Tadmor, Critical Thresholds in a convolution model for nonlinear conservation laws,, SIAM J. Math. Anal. 33 (2001), 33 (2001), 930. doi: 10.1137/S0036141001386908. Google Scholar

[20]

E. J. Parkes and V. O. Vakhneko, The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method,, Chaos Solitons Fractals., 13 (2002), 1819. doi: 10.1016/S0960-0779(01)00200-4. Google Scholar

[21]

B. Perthame and A. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model,, Trans. Amer. Math. Soc., 361 (2009), 2319. doi: 10.1090/S0002-9947-08-04656-4. Google Scholar

[22]

P. I. Richards, Shock waves on the highway,, Oper. Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[23]

P. Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion,, Phys. Rev. A, 40 (1989), 7193. doi: 10.1103/PhysRevA.40.7193. Google Scholar

[24]

R. Seliger, A note on the breaking of waves,, Proc. Roy. Soc. Ser. A, 303 (1968), 493. doi: 10.1098/rspa.1968.0063. Google Scholar

[25]

A. Sopasakis and M. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics,, SIAM J. Appl. Math., 66 (2006), 921. doi: 10.1137/040617790. Google Scholar

[26]

V. O. Vakhnenko, Solitons in a nonlinear model medium,, J. Phys., 25 (1992), 4181. doi: 10.1088/0305-4470/25/15/025. Google Scholar

[27]

G. B. Whitham, Linear and Nonlinear Waves,, Pure and Applied Mathematics, (1974). Google Scholar

[28]

K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions,, Q. Appl. Math, 57 (1999), 573. Google Scholar

show all references

References:
[1]

F. Betancourt, R. Burger, K. H. Karlsen and E. M. Tory, On nonlocal conservation laws modelling sedimentation,, Nonlinearity., 24 (2011), 855. doi: 10.1088/0951-7715/24/3/008. Google Scholar

[2]

M. Burger, Y. Dolak and C. Schmeiser, Asymptotic analysis of an advection-dominated chemotaxis model in multiple spatial dimensions,, Commun. Math. Sci., 6 (2008), 1. doi: 10.4310/CMS.2008.v6.n1.a1. Google Scholar

[3]

A. Constantin and J. Escher, Wave breaking for nonlinear nonlocal shallow water equations,, Acta Math., 181 (1998), 229. doi: 10.1007/BF02392586. Google Scholar

[4]

C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics,, Springer-Verlag, (2005). Google Scholar

[5]

A. Degasperis and M. Procesi, Asymptotic integrability,, in Symmetry and Perturbation Theory (Rome, (1998), 23. Google Scholar

[6]

Y. Dolak and C. Schmeiser, The Keller-Segel model with logistic sensitivity function and small diffusivity,, SIAM J. Appl. Math., 66 (2005), 286. doi: 10.1137/040612841. Google Scholar

[7]

S. Engelberg, H. Liu and E. Tadmor, Critical Thresholds in Euler-Poisson equations,, Indiana Univ. Math. J., 50 (2001), 109. doi: 10.1512/iumj.2001.50.2177. Google Scholar

[8]

K. Hamer, Non-linear effects on the propagation of sound waves in a radiating gas,, Quart. J. Mech. Appl. Math., 24 (1971), 155. doi: 10.1093/qjmam/24.2.155. Google Scholar

[9]

D. D. Holm and A. N. W. Hone, A class of equations with peakon and pulson solutions (with a appendix by Braden H and Byatt-Smith),, J. Nonlinear Math. Phys, 12 (2005), 380. doi: 10.2991/jnmp.2005.12.s1.31. Google Scholar

[10]

J. K. Hunter, Numerical solutions of some nonlinear dispersive wave equations,, Lect. Appl. Math, 26 (1990), 301. Google Scholar

[11]

A. Kurganov and A. Polizzi, Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics,, Netw. Heterog. Media., 4 (2009), 431. doi: 10.3934/nhm.2009.4.431. Google Scholar

[12]

G. Kynch, A theory of sedimentation,, Trans. Fraday Soc., 48 (1952), 166. doi: 10.1039/tf9524800166. Google Scholar

[13]

D. Li and T. Li, Shock formation in a traffic flow model with Arrhenius look-ahead dynamics,, Netw. Heterog. Media, 6 (2001), 681. doi: 10.3934/nhm.2011.6.681. Google Scholar

[14]

H. Liu, Wave breaking in a class of nonlocal dispersive wave equations,, Journal of Nonlinear Math Phys., 13 (2006), 441. doi: 10.2991/jnmp.2006.13.3.8. Google Scholar

[15]

T. Li and H. Liu, Critical thresholds in hyperbolic relaxation systems,, J. Differential Equations, 247 (2009), 33. doi: 10.1016/j.jde.2009.03.032. Google Scholar

[16]

H. Liu and E. Tadmor, Spectral dynamics of the velocity gradient field in restricted flows,, Comm. Math. Phys., 228 (2002), 435. doi: 10.1007/s002200200667. Google Scholar

[17]

H. Liu and E. Tadmor, Critical thresholds in 2D restricted Euler-Poisson equations,, SIAM J. Appl. Math., 63 (2003), 1889. doi: 10.1137/S0036139902416986. Google Scholar

[18]

M. J. Lighthill and G. B. Whitham, On kinematic waves: II. A theory of traffic flow on long crowded roads,, Proc. Roy. Soc., 229 (1955), 317. doi: 10.1098/rspa.1955.0089. Google Scholar

[19]

H. L. Liu and E. Tadmor, Critical Thresholds in a convolution model for nonlinear conservation laws,, SIAM J. Math. Anal. 33 (2001), 33 (2001), 930. doi: 10.1137/S0036141001386908. Google Scholar

[20]

E. J. Parkes and V. O. Vakhneko, The calculation of multi-soliton solutions of the Vakhnenko equation by the inverse scattering method,, Chaos Solitons Fractals., 13 (2002), 1819. doi: 10.1016/S0960-0779(01)00200-4. Google Scholar

[21]

B. Perthame and A. Dalibard, Existence of solutions of the hyperbolic Keller-Segel model,, Trans. Amer. Math. Soc., 361 (2009), 2319. doi: 10.1090/S0002-9947-08-04656-4. Google Scholar

[22]

P. I. Richards, Shock waves on the highway,, Oper. Res., 4 (1956), 42. doi: 10.1287/opre.4.1.42. Google Scholar

[23]

P. Rosenau, Extending hydrodynamics via the regularization of the Chapman-Enskog expansion,, Phys. Rev. A, 40 (1989), 7193. doi: 10.1103/PhysRevA.40.7193. Google Scholar

[24]

R. Seliger, A note on the breaking of waves,, Proc. Roy. Soc. Ser. A, 303 (1968), 493. doi: 10.1098/rspa.1968.0063. Google Scholar

[25]

A. Sopasakis and M. Katsoulakis, Stochastic modeling and simulation of traffic flow: Asymmetric single exclusion process with Arrhenius look-ahead dynamics,, SIAM J. Appl. Math., 66 (2006), 921. doi: 10.1137/040617790. Google Scholar

[26]

V. O. Vakhnenko, Solitons in a nonlinear model medium,, J. Phys., 25 (1992), 4181. doi: 10.1088/0305-4470/25/15/025. Google Scholar

[27]

G. B. Whitham, Linear and Nonlinear Waves,, Pure and Applied Mathematics, (1974). Google Scholar

[28]

K. Zumbrun, On a nonlocal dispersive equation modeling particle suspensions,, Q. Appl. Math, 57 (1999), 573. Google Scholar

[1]

Boris P. Andreianov, Giuseppe Maria Coclite, Carlotta Donadello. Well-posedness for vanishing viscosity solutions of scalar conservation laws on a network. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5913-5942. doi: 10.3934/dcds.2017257

[2]

Young-Sam Kwon. On the well-posedness of entropy solutions for conservation laws with source terms. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 933-949. doi: 10.3934/dcds.2009.25.933

[3]

Tong Li. Well-posedness theory of an inhomogeneous traffic flow model. Discrete & Continuous Dynamical Systems - B, 2002, 2 (3) : 401-414. doi: 10.3934/dcdsb.2002.2.401

[4]

Carlos F. Daganzo. On the variational theory of traffic flow: well-posedness, duality and applications. Networks & Heterogeneous Media, 2006, 1 (4) : 601-619. doi: 10.3934/nhm.2006.1.601

[5]

Luc Molinet, Francis Ribaud. On global well-posedness for a class of nonlocal dispersive wave equations. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 657-668. doi: 10.3934/dcds.2006.15.657

[6]

Hongmei Cao, Hao-Guang Li, Chao-Jiang Xu, Jiang Xu. Well-posedness of Cauchy problem for Landau equation in critical Besov space. Kinetic & Related Models, 2019, 12 (4) : 829-884. doi: 10.3934/krm.2019032

[7]

Xiaoli Li, Boling Guo. Well-posedness for the three-dimensional compressible liquid crystal flows. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : 1913-1937. doi: 10.3934/dcdss.2016078

[8]

Dong Li, Tong Li. Shock formation in a traffic flow model with Arrhenius look-ahead dynamics. Networks & Heterogeneous Media, 2011, 6 (4) : 681-694. doi: 10.3934/nhm.2011.6.681

[9]

Tatsien Li, Libin Wang. Global exact shock reconstruction for quasilinear hyperbolic systems of conservation laws. Discrete & Continuous Dynamical Systems - A, 2006, 15 (2) : 597-609. doi: 10.3934/dcds.2006.15.597

[10]

Elena Rossi. Well-posedness of general 1D initial boundary value problems for scalar balance laws. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3577-3608. doi: 10.3934/dcds.2019147

[11]

Paola Goatin, Sheila Scialanga. Well-posedness and finite volume approximations of the LWR traffic flow model with non-local velocity. Networks & Heterogeneous Media, 2016, 11 (1) : 107-121. doi: 10.3934/nhm.2016.11.107

[12]

Julien Cividini. Pattern formation in 2D traffic flows. Discrete & Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395

[13]

Thomas Lorenz. Nonlocal hyperbolic population models structured by size and spatial position: Well-posedness. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 4547-4628. doi: 10.3934/dcdsb.2019156

[14]

Qiao Liu, Ting Zhang, Jihong Zhao. Well-posedness for the 3D incompressible nematic liquid crystal system in the critical $L^p$ framework. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 371-402. doi: 10.3934/dcds.2016.36.371

[15]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[16]

Nikolaos Bournaveas. Local well-posedness for a nonlinear dirac equation in spaces of almost critical dimension. Discrete & Continuous Dynamical Systems - A, 2008, 20 (3) : 605-616. doi: 10.3934/dcds.2008.20.605

[17]

Fucai Li, Yanmin Mu, Dehua Wang. Local well-posedness and low Mach number limit of the compressible magnetohydrodynamic equations in critical spaces. Kinetic & Related Models, 2017, 10 (3) : 741-784. doi: 10.3934/krm.2017030

[18]

Myeongju Chae, Soonsik Kwon. Global well-posedness for the $L^2$-critical Hartree equation on $\mathbb{R}^n$, $n\ge 3$. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1725-1743. doi: 10.3934/cpaa.2009.8.1725

[19]

Hongjie Dong, Dapeng Du. Global well-posedness and a decay estimate for the critical dissipative quasi-geostrophic equation in the whole space. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1095-1101. doi: 10.3934/dcds.2008.21.1095

[20]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]