July  2015, 35(7): 3103-3131. doi: 10.3934/dcds.2015.35.3103

Asymptotics in shallow water waves

1. 

Northeastern University, 360 Huntington Avenue, Boston, MA 02115, United States, United States

Received  August 2014 Revised  September 2014 Published  January 2015

In this paper we consider the initial value problem for a family of shallow water equations on the line $\mathbb{R}$ with various asymptotic conditions at infinity. In particular we construct solutions with prescribed asymptotic expansion as $x\to\pm\infty$ and prove their invariance with respect to the solution map.
Citation: Robert McOwen, Peter Topalov. Asymptotics in shallow water waves. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3103-3131. doi: 10.3934/dcds.2015.35.3103
References:
[1]

V. Arnold, Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits,, Ann. Inst. Fourier, 16 (1966), 319. doi: 10.5802/aif.233.

[2]

I. Bondareva and M. Shubin, Growing asymptotic solutions of the Korteweg-de Vries equation and of its higher analogues,, Dokl. Akad. Nauk SSSR, 267 (1982), 1035.

[3]

I. Bondareva and M. Shubin, Uniqueness of the solution of the Cauchy problem for the Korteweg-de Vries equation in classes of increasing functions,, Vestnik Moskov. Univ. Ser. I Mat. Mekh, 102 (1985), 35.

[4]

I. Bondareva and M. Shubin, Equations of Korteweg-de Vries type in classes of increasing functions,, J. Soviet Math., 51 (1990), 2323. doi: 10.1007/BF01094991.

[5]

A. Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschl, Long-time asymptotics for the Camassa-Holm equation,, SIAM J. Math Anal., 41 (2009), 1559. doi: 10.1137/090748500.

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett, 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661.

[7]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier, 50 (2000), 321. doi: 10.5802/aif.1757.

[8]

A. Constantin, On the scattering problem for Camassa-Holm equation,, Proc. R. Soc. Lond. A, 457 (2001), 953. doi: 10.1098/rspa.2000.0701.

[9]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5.

[10]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303.

[11]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75. doi: 10.1007/PL00004793.

[12]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation,, Indiana Univ. Math. J., 47 (1998), 1527. doi: 10.1512/iumj.1998.47.1466.

[13]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equation,, Arch. Rational Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2.

[14]

A. Constantin and H. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

[15]

C. De Lellis, T. Kappeler and P. Topalov, Low regularity solutions of the Camassa-Holm equation,, Comm. Partial Differential Equations, 32 (2007), 87. doi: 10.1080/03605300601091470.

[16]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102. doi: 10.2307/1970699.

[17]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Physica D, 4 (1981), 47. doi: 10.1016/0167-2789(81)90004-X.

[18]

D. Holm and M. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs,, SIAM J. Applied Dynamical Systems, 2 (2003), 323. doi: 10.1137/S1111111102410943.

[19]

D. Holm and M. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in 1+1 nonlinear PDE,, Phys. Lett. A, 308 (2003), 437. doi: 10.1016/S0375-9601(03)00114-2.

[20]

H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms,, Mem. Amer. Math. Soc., 226 (2013). doi: 10.1090/S0065-9266-2013-00676-4.

[21]

T. Kappeler, P. Perry, M. Shubin and P. Topalov, Solutions of mKdV in classes of functions unbounded at infinity,, J. Geom. Anal., 18 (2008), 443. doi: 10.1007/s12220-008-9013-3.

[22]

S. Lang, Differential Manifolds,, Addison-Wesley Series in Mathematics, (1972).

[23]

H. McKean, Fredholm determinants and Camassa-Holm hierarchy,, Comm. Pure Appl. Math., 56 (2003), 638. doi: 10.1002/cpa.10069.

[24]

R. McOwen and P. Topalov, Groups of asymptotic diffeomorphisms,, , ().

[25]

G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group,, J. Geom. Phys., 24 (1998), 203. doi: 10.1016/S0393-0440(97)00010-7.

[26]

G. Misiolek, Classical solutions of the periodic Camassa-Holm equation,, GAFA, 12 (2002), 1080. doi: 10.1007/PL00012648.

[27]

V. Ovsienko and B. Khesin, Korteweg-de Vries superequations as an Euler equation,, Functional Anal. Appl., 21 (1987), 81.

[28]

J. Toland, Stokes waves,, Topological Methods in Nonlinear Analysis, 7 (1996), 1.

show all references

References:
[1]

V. Arnold, Sur la geometrié differentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluids parfaits,, Ann. Inst. Fourier, 16 (1966), 319. doi: 10.5802/aif.233.

[2]

I. Bondareva and M. Shubin, Growing asymptotic solutions of the Korteweg-de Vries equation and of its higher analogues,, Dokl. Akad. Nauk SSSR, 267 (1982), 1035.

[3]

I. Bondareva and M. Shubin, Uniqueness of the solution of the Cauchy problem for the Korteweg-de Vries equation in classes of increasing functions,, Vestnik Moskov. Univ. Ser. I Mat. Mekh, 102 (1985), 35.

[4]

I. Bondareva and M. Shubin, Equations of Korteweg-de Vries type in classes of increasing functions,, J. Soviet Math., 51 (1990), 2323. doi: 10.1007/BF01094991.

[5]

A. Boutet de Monvel, A. Kostenko, D. Shepelsky and G. Teschl, Long-time asymptotics for the Camassa-Holm equation,, SIAM J. Math Anal., 41 (2009), 1559. doi: 10.1137/090748500.

[6]

R. Camassa and D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett, 71 (1993), 1661. doi: 10.1103/PhysRevLett.71.1661.

[7]

A. Constantin, Existence of permanent and breaking waves for a shallow water equation: A geometric approach,, Ann. Inst. Fourier, 50 (2000), 321. doi: 10.5802/aif.1757.

[8]

A. Constantin, On the scattering problem for Camassa-Holm equation,, Proc. R. Soc. Lond. A, 457 (2001), 953. doi: 10.1098/rspa.2000.0701.

[9]

A. Constantin, The trajectories of particles in Stokes waves,, Invent. math., 166 (2006), 523. doi: 10.1007/s00222-006-0002-5.

[10]

A. Constantin and J. Escher, Global existence and blow-up for a shallow water equation,, Annali Sc. Norm. Sup. Pisa, 26 (1998), 303.

[11]

A. Constantin and J. Escher, On the blow-up rate and the blow-up set of breaking waves for a shallow water equation,, Math. Z., 233 (2000), 75. doi: 10.1007/PL00004793.

[12]

A. Constantin and J. Escher, Global weak solutions for a shallow water equation,, Indiana Univ. Math. J., 47 (1998), 1527. doi: 10.1512/iumj.1998.47.1466.

[13]

A. Constantin and D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equation,, Arch. Rational Mech. Anal., 192 (2009), 165. doi: 10.1007/s00205-008-0128-2.

[14]

A. Constantin and H. McKean, A shallow water equation on the circle,, Comm. Pure Appl. Math., 52 (1999), 949. doi: 10.1002/(SICI)1097-0312(199908)52:8<949::AID-CPA3>3.0.CO;2-D.

[15]

C. De Lellis, T. Kappeler and P. Topalov, Low regularity solutions of the Camassa-Holm equation,, Comm. Partial Differential Equations, 32 (2007), 87. doi: 10.1080/03605300601091470.

[16]

D. Ebin and J. Marsden, Groups of diffeomorphisms and the motion of an incompressible fluid,, Ann. Math., 92 (1970), 102. doi: 10.2307/1970699.

[17]

A. Fokas and B. Fuchssteiner, Symplectic structures, their Bäcklund transformation and hereditary symmetries,, Physica D, 4 (1981), 47. doi: 10.1016/0167-2789(81)90004-X.

[18]

D. Holm and M. Staley, Wave structure and nonlinear balances in a family of evolutionary PDEs,, SIAM J. Applied Dynamical Systems, 2 (2003), 323. doi: 10.1137/S1111111102410943.

[19]

D. Holm and M. Staley, Nonlinear balance and exchange of stability in dynamics of solitons, peakons, ramps/cliffs and leftons in 1+1 nonlinear PDE,, Phys. Lett. A, 308 (2003), 437. doi: 10.1016/S0375-9601(03)00114-2.

[20]

H. Inci, T. Kappeler and P. Topalov, On the regularity of the composition of diffeomorphisms,, Mem. Amer. Math. Soc., 226 (2013). doi: 10.1090/S0065-9266-2013-00676-4.

[21]

T. Kappeler, P. Perry, M. Shubin and P. Topalov, Solutions of mKdV in classes of functions unbounded at infinity,, J. Geom. Anal., 18 (2008), 443. doi: 10.1007/s12220-008-9013-3.

[22]

S. Lang, Differential Manifolds,, Addison-Wesley Series in Mathematics, (1972).

[23]

H. McKean, Fredholm determinants and Camassa-Holm hierarchy,, Comm. Pure Appl. Math., 56 (2003), 638. doi: 10.1002/cpa.10069.

[24]

R. McOwen and P. Topalov, Groups of asymptotic diffeomorphisms,, , ().

[25]

G. Misiolek, A shallow water equation as a geodesic flow on the Bott-Virasoro group,, J. Geom. Phys., 24 (1998), 203. doi: 10.1016/S0393-0440(97)00010-7.

[26]

G. Misiolek, Classical solutions of the periodic Camassa-Holm equation,, GAFA, 12 (2002), 1080. doi: 10.1007/PL00012648.

[27]

V. Ovsienko and B. Khesin, Korteweg-de Vries superequations as an Euler equation,, Functional Anal. Appl., 21 (1987), 81.

[28]

J. Toland, Stokes waves,, Topological Methods in Nonlinear Analysis, 7 (1996), 1.

[1]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[2]

Delia Ionescu-Kruse. Variational derivation of the Camassa-Holm shallow water equation with non-zero vorticity. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 531-543. doi: 10.3934/dcds.2007.19.531

[3]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

[4]

Zhaoyang Yin. Well-posedness and blow-up phenomena for the periodic generalized Camassa-Holm equation. Communications on Pure & Applied Analysis, 2004, 3 (3) : 501-508. doi: 10.3934/cpaa.2004.3.501

[5]

Joachim Escher, Olaf Lechtenfeld, Zhaoyang Yin. Well-posedness and blow-up phenomena for the 2-component Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 19 (3) : 493-513. doi: 10.3934/dcds.2007.19.493

[6]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[7]

Jinlu Li, Zhaoyang Yin. Well-posedness and blow-up phenomena for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5493-5508. doi: 10.3934/dcds.2016042

[8]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[9]

Ying Fu, Changzheng Qu, Yichen Ma. Well-posedness and blow-up phenomena for the interacting system of the Camassa-Holm and Degasperis-Procesi equations. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1025-1035. doi: 10.3934/dcds.2010.27.1025

[10]

Kai Yan, Zhaoyang Yin. Well-posedness for a modified two-component Camassa-Holm system in critical spaces. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1699-1712. doi: 10.3934/dcds.2013.33.1699

[11]

Jaime Angulo, Carlos Matheus, Didier Pilod. Global well-posedness and non-linear stability of periodic traveling waves for a Schrödinger-Benjamin-Ono system. Communications on Pure & Applied Analysis, 2009, 8 (3) : 815-844. doi: 10.3934/cpaa.2009.8.815

[12]

Wei Luo, Zhaoyang Yin. Local well-posedness in the critical Besov space and persistence properties for a three-component Camassa-Holm system with N-peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5047-5066. doi: 10.3934/dcds.2016019

[13]

Lei Zhang, Bin Liu. Well-posedness, blow-up criteria and gevrey regularity for a rotation-two-component camassa-holm system. Discrete & Continuous Dynamical Systems - A, 2018, 38 (5) : 2655-2685. doi: 10.3934/dcds.2018112

[14]

David M. Ambrose, Jerry L. Bona, David P. Nicholls. Well-posedness of a model for water waves with viscosity. Discrete & Continuous Dynamical Systems - B, 2012, 17 (4) : 1113-1137. doi: 10.3934/dcdsb.2012.17.1113

[15]

Radhia Ghanmi, Tarek Saanouni. Well-posedness issues for some critical coupled non-linear Klein-Gordon equations. Communications on Pure & Applied Analysis, 2019, 18 (2) : 603-623. doi: 10.3934/cpaa.2019030

[16]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[17]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[18]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[19]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[20]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (6)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]