July  2015, 35(7): 2863-2880. doi: 10.3934/dcds.2015.35.2863

Well-posedness and ill-posedness for the cubic fractional Schrödinger equations

1. 

Department of Mathematics, and Institute of Pure and Applied Mathematics, Chonbuk National University, Jeonju 561-756

2. 

Department of Mathematical Sciences, Ulsan National Institute of Science and Technology, Ulsan, 689-798, South Korea

3. 

Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, 335 Gwahangno, Yuseong-gu, Daejeon, Korea 305-701

4. 

Department of Mathematical Sciences, Seoul National University, Seoul 151-747, South Korea

Received  May 2014 Revised  December 2014 Published  January 2015

We study the low regularity well-posedness of the 1-dimensional cubic nonlinear fractional Schrödinger equations with Lévy indices $1 < \alpha < 2$. We consider both non-periodic and periodic cases, and prove that the Cauchy problems are locally well-posed in $H^s$ for $s \geq \frac {2-\alpha}4$. This is shown via a trilinear estimate in Bourgain's $X^{s,b}$ space. We also show that non-periodic equations are ill-posed in $H^s$ for $\frac {2 - 3\alpha}{4(\alpha + 1)} < s < \frac {2-\alpha}4$ in the sense that the flow map is not locally uniformly continuous.
Citation: Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863
References:
[1]

N. Burq, P. Gerard and N. Tzvetkov, An instability property of the nonlinear Schrödinger equation on $S^d$,, Math. Res. Lett, 9 (2002), 323. doi: 10.4310/MRL.2002.v9.n3.a8. Google Scholar

[2]

W. Chen and Z. Guo, Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation,, J. Anal. Math., 114 (2011), 121. doi: 10.1007/s11854-011-0014-y. Google Scholar

[3]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, Amer. J. Math, 125 (2003), 1235. doi: 10.1353/ajm.2003.0040. Google Scholar

[4]

_______, Instability of the periodic nonlinear Schrödinger equation,, preprint, (). Google Scholar

[5]

Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity,, Funkcialaj Ekvacioj, 56 (2013), 193. doi: 10.1619/fesi.56.193. Google Scholar

[6]

_______, On the orbital stability of fractional Schrödinger equations,, Comm. Pure Appl. Anal, 13 (2014), 1267. doi: 10.3934/cpaa.2014.13.1267. Google Scholar

[7]

Y. Cho, G. Hwang, S. Kwon and S. Lee, Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations,, Nolinear Analysis, 86 (2013), 12. doi: 10.1016/j.na.2013.03.002. Google Scholar

[8]

_______, Profile decompositions of fractional Schrodinger equations with angularly regular data,, J. Differential Equations, 256 (2014), 3011. doi: 10.1016/j.jde.2014.01.030. Google Scholar

[9]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., 62 (2013), 991. doi: 10.1512/iumj.2013.62.4970. Google Scholar

[10]

Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates,, Commun. Pure Appl. Anal., 10 (2011), 1121. doi: 10.3934/cpaa.2011.10.1121. Google Scholar

[11]

S. Demirbas, M. B. Erdoǧan and N. Tzirakis, Existence and uniqueness theory for the fractional Schrödinger equation on the torus,, preprint, (). Google Scholar

[12]

B. Guo and Z. Huo, Global Well-Posedness for the Fractional Nonlinear Schrödinger Equation,, Comm. Partial Differential Equations, 36 (2011), 247. doi: 10.1080/03605302.2010.503769. Google Scholar

[13]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension,, J. Func. Anal., 266 (2014), 139. doi: 10.1016/j.jfa.2013.08.027. Google Scholar

[14]

S. Kwon, Well-posedness and ill-posedness of the fifth-order modified KdV equations,, Elec. J. Diff. Eqns, (2008), 1. Google Scholar

[15]

N. Laskin, Fractional quantum mechanics and Lévy path integrals,, Phys. Lett. A, 268 (2000), 298. doi: 10.1016/S0375-9601(00)00201-2. Google Scholar

[16]

L. Molinet, On ill-posedness for the one-dimensional periodic cubic Schrödinger equation,, Math. Res. Lett, 16 (2009), 111. doi: 10.4310/MRL.2009.v16.n1.a11. Google Scholar

[17]

T. Tao, Multilinear weighted convolution of $L^2$ functions, and applications to nonlinear dispersive equations,, Amer. J. Math., 123 (2001), 839. doi: 10.1353/ajm.2001.0035. Google Scholar

show all references

References:
[1]

N. Burq, P. Gerard and N. Tzvetkov, An instability property of the nonlinear Schrödinger equation on $S^d$,, Math. Res. Lett, 9 (2002), 323. doi: 10.4310/MRL.2002.v9.n3.a8. Google Scholar

[2]

W. Chen and Z. Guo, Global well-posedness and I-method for the fifth-order Korteweg-de Vries equation,, J. Anal. Math., 114 (2011), 121. doi: 10.1007/s11854-011-0014-y. Google Scholar

[3]

M. Christ, J. Colliander and T. Tao, Asymptotics, frequency modulation, and low regularity ill-posedness for canonical defocusing equations,, Amer. J. Math, 125 (2003), 1235. doi: 10.1353/ajm.2003.0040. Google Scholar

[4]

_______, Instability of the periodic nonlinear Schrödinger equation,, preprint, (). Google Scholar

[5]

Y. Cho, H. Hajaiej, G. Hwang and T. Ozawa, On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity,, Funkcialaj Ekvacioj, 56 (2013), 193. doi: 10.1619/fesi.56.193. Google Scholar

[6]

_______, On the orbital stability of fractional Schrödinger equations,, Comm. Pure Appl. Anal, 13 (2014), 1267. doi: 10.3934/cpaa.2014.13.1267. Google Scholar

[7]

Y. Cho, G. Hwang, S. Kwon and S. Lee, Profile decompositions and blowup phenomena of mass critical fractional Schrödinger equations,, Nolinear Analysis, 86 (2013), 12. doi: 10.1016/j.na.2013.03.002. Google Scholar

[8]

_______, Profile decompositions of fractional Schrodinger equations with angularly regular data,, J. Differential Equations, 256 (2014), 3011. doi: 10.1016/j.jde.2014.01.030. Google Scholar

[9]

Y. Cho and S. Lee, Strichartz estimates in spherical coordinates,, Indiana Univ. Math. J., 62 (2013), 991. doi: 10.1512/iumj.2013.62.4970. Google Scholar

[10]

Y. Cho, T. Ozawa and S. Xia, Remarks on some dispersive estimates,, Commun. Pure Appl. Anal., 10 (2011), 1121. doi: 10.3934/cpaa.2011.10.1121. Google Scholar

[11]

S. Demirbas, M. B. Erdoǧan and N. Tzirakis, Existence and uniqueness theory for the fractional Schrödinger equation on the torus,, preprint, (). Google Scholar

[12]

B. Guo and Z. Huo, Global Well-Posedness for the Fractional Nonlinear Schrödinger Equation,, Comm. Partial Differential Equations, 36 (2011), 247. doi: 10.1080/03605302.2010.503769. Google Scholar

[13]

A. D. Ionescu and F. Pusateri, Nonlinear fractional Schrödinger equations in one dimension,, J. Func. Anal., 266 (2014), 139. doi: 10.1016/j.jfa.2013.08.027. Google Scholar

[14]

S. Kwon, Well-posedness and ill-posedness of the fifth-order modified KdV equations,, Elec. J. Diff. Eqns, (2008), 1. Google Scholar

[15]

N. Laskin, Fractional quantum mechanics and Lévy path integrals,, Phys. Lett. A, 268 (2000), 298. doi: 10.1016/S0375-9601(00)00201-2. Google Scholar

[16]

L. Molinet, On ill-posedness for the one-dimensional periodic cubic Schrödinger equation,, Math. Res. Lett, 16 (2009), 111. doi: 10.4310/MRL.2009.v16.n1.a11. Google Scholar

[17]

T. Tao, Multilinear weighted convolution of $L^2$ functions, and applications to nonlinear dispersive equations,, Amer. J. Math., 123 (2001), 839. doi: 10.1353/ajm.2001.0035. Google Scholar

[1]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[2]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[3]

Massimo Cicognani, Michael Reissig. Well-posedness for degenerate Schrödinger equations. Evolution Equations & Control Theory, 2014, 3 (1) : 15-33. doi: 10.3934/eect.2014.3.15

[4]

Tsukasa Iwabuchi, Kota Uriya. Ill-posedness for the quadratic nonlinear Schrödinger equation with nonlinearity $|u|^2$. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1395-1405. doi: 10.3934/cpaa.2015.14.1395

[5]

Tarek Saanouni. Global well-posedness of some high-order semilinear wave and Schrödinger type equations with exponential nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (1) : 273-291. doi: 10.3934/cpaa.2014.13.273

[6]

Takeshi Wada. A remark on local well-posedness for nonlinear Schrödinger equations with power nonlinearity-an alternative approach. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1359-1374. doi: 10.3934/cpaa.2019066

[7]

In-Jee Jeong, Benoit Pausader. Discrete Schrödinger equation and ill-posedness for the Euler equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 281-293. doi: 10.3934/dcds.2017012

[8]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[9]

Yannis Angelopoulos. Well-posedness and ill-posedness results for the Novikov-Veselov equation. Communications on Pure & Applied Analysis, 2016, 15 (3) : 727-760. doi: 10.3934/cpaa.2016.15.727

[10]

Yuanyuan Ren, Yongsheng Li, Wei Yan. Sharp well-posedness of the Cauchy problem for the fourth order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (2) : 487-504. doi: 10.3934/cpaa.2018027

[11]

Takafumi Akahori. Low regularity global well-posedness for the nonlinear Schrödinger equation on closed manifolds. Communications on Pure & Applied Analysis, 2010, 9 (2) : 261-280. doi: 10.3934/cpaa.2010.9.261

[12]

Seckin Demirbas. Local well-posedness for 2-D Schrödinger equation on irrational tori and bounds on Sobolev norms. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1517-1530. doi: 10.3934/cpaa.2017072

[13]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for a periodic nonlinear Schrödinger equation in 1D and 2D. Discrete & Continuous Dynamical Systems - A, 2007, 19 (1) : 37-65. doi: 10.3934/dcds.2007.19.37

[14]

Zihua Guo, Yifei Wu. Global well-posedness for the derivative nonlinear Schrödinger equation in $H^{\frac 12} (\mathbb{R} )$. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 257-264. doi: 10.3934/dcds.2017010

[15]

Daniela De Silva, Nataša Pavlović, Gigliola Staffilani, Nikolaos Tzirakis. Global well-posedness for the $L^2$ critical nonlinear Schrödinger equation in higher dimensions. Communications on Pure & Applied Analysis, 2007, 6 (4) : 1023-1041. doi: 10.3934/cpaa.2007.6.1023

[16]

Jun-ichi Segata. Well-posedness and existence of standing waves for the fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2010, 27 (3) : 1093-1105. doi: 10.3934/dcds.2010.27.1093

[17]

Hiroyuki Hirayama, Mamoru Okamoto. Well-posedness and scattering for fourth order nonlinear Schrödinger type equations at the scaling critical regularity. Communications on Pure & Applied Analysis, 2016, 15 (3) : 831-851. doi: 10.3934/cpaa.2016.15.831

[18]

Igor Chueshov, Alexey Shcherbina. Semi-weak well-posedness and attractors for 2D Schrödinger-Boussinesq equations. Evolution Equations & Control Theory, 2012, 1 (1) : 57-80. doi: 10.3934/eect.2012.1.57

[19]

Changxing Miao, Bo Zhang. Global well-posedness of the Cauchy problem for nonlinear Schrödinger-type equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 181-200. doi: 10.3934/dcds.2007.17.181

[20]

Chengchun Hao. Well-posedness for one-dimensional derivative nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2007, 6 (4) : 997-1021. doi: 10.3934/cpaa.2007.6.997

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (35)
  • HTML views (0)
  • Cited by (9)

[Back to Top]