# American Institute of Mathematical Sciences

January  2015, 35(1): 283-299. doi: 10.3934/dcds.2015.35.283

## Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior

 1 University of Basel, Department of Mathematics and Computer Science, Rheinsprung 21, 4051 Basel, Switzerland, Switzerland

Received  January 2014 Revised  May 2014 Published  August 2014

We study the solutions $u\in C^\infty(\mathbb{R}^{2m})$ of the problem $$\label{P0} (-\Delta)^mu=\bar Qe^{2mu}, \text{ where }\bar Q=\pm (2m-1)!, \quad V :=\int_{\mathbb{R}^{2m}}e^{2mu}dx <\infty,(1)$$ particularly when $m>1$. Problem (1) corresponds to finding conformal metrics $g_u:=e^{2u}|dx|^2$ on $\mathbb{R}^{2m}$ with constant $Q$-curvature $\bar Q$ and finite volume $V$. Extending previous works of Chang-Chen, and Wei-Ye, we show that both the value $V$ and the asymptotic behavior of $u(x)$ as $|x|\to \infty$ can be simultaneously prescribed, under certain restrictions. When $\bar Q= (2m-1)!$ we need to assume $V < vol(S^{2m})$, but surprisingly for $\bar Q=-(2m-1)!$ the volume $V$ can be chosen arbitrarily.
Citation: Ali Hyder, Luca Martinazzi. Conformal metrics on $\mathbb{R}^{2m}$ with constant Q-curvature, prescribed volume and asymptotic behavior. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 283-299. doi: 10.3934/dcds.2015.35.283
##### References:
 [1] H. Brézis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations, 16 (1991), 1223. doi: 10.1080/03605309108820797. Google Scholar [2] Sun-Yung A. Chang and W. Chen, A note on a class of higher order conformally covariant equations,, Discrete Contin. Dynam. Systems, 7 (2001), 275. doi: 10.3934/dcds.2001.7.275. Google Scholar [3] Sun-Yung A. Chang and P. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry,, Math. Res. Lett., 4 (1997), 91. doi: 10.4310/MRL.1997.v4.n1.a9. Google Scholar [4] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar [5] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition, (1998). Google Scholar [6] E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several variables,, Russ. Math. Surv., 16 (1961), 91. Google Scholar [7] C. R. Graham, R. Jenne, L. Mason and G. Sparling, Conformally invariant powers of the Laplacian. I. existence,, J. London Math. Soc., 46 (1992), 557. doi: 10.1112/jlms/s2-46.3.557. Google Scholar [8] T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three,, to appear in Calc. Var. Partial Differential Equations, (2014). doi: 10.1007/s00526-014-0718-9. Google Scholar [9] C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^n$,, Comment. Math. Helv., 73 (1998), 206. doi: 10.1007/s000140050052. Google Scholar [10] R. C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,, Comm. Pure Appl. Math., 32 (1979), 783. doi: 10.1002/cpa.3160320604. Google Scholar [11] L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant $Q$-curvature,, Rend. Lincei. Mat. Appl., 19 (2008), 279. doi: 10.4171/RLM/525. Google Scholar [12] L. Martinazzi, Classification of solutions to the higher order Liouville's equation on $\mathbbR^{2m}$,, Math. Z., 263 (2009), 307. doi: 10.1007/s00209-008-0419-1. Google Scholar [13] L. Martinazzi, Quantization for the prescribed Q-curvature equation on open domains,, Commun. Contemp. Math., 13 (2011), 533. doi: 10.1142/S0219199711004373. Google Scholar [14] L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant Q-curvature and large volume,, Ann. Inst. Henri Poincaré (C), 30 (2013), 969. doi: 10.1016/j.anihpc.2012.12.007. Google Scholar [15] L. Martinazzi and M. Petrache, Asymptotics and quantization for a mean-field equation of higher order,, Comm. Partial Differential Equations, 35 (2010), 443. doi: 10.1080/03605300903296330. Google Scholar [16] F. Robert, Quantization effects for a fourth order equation of exponential growth in dimension four,, Proc. Roy. Soc. Edinburgh Sec. A, 137 (2007), 531. doi: 10.1017/S0308210506000096. Google Scholar [17] J. Wei and D. Ye, Nonradial solutions for a conformally invariant fourth order equation in $\mathbbR^4$,, Calc. Var. Partial Differential Equations, 32 (2008), 373. doi: 10.1007/s00526-007-0145-2. Google Scholar

show all references

##### References:
 [1] H. Brézis and F. Merle, Uniform estimates and blow-up behavior for solutions of $-\Delta u=V(x)e^u$ in two dimensions,, Comm. Partial Differential Equations, 16 (1991), 1223. doi: 10.1080/03605309108820797. Google Scholar [2] Sun-Yung A. Chang and W. Chen, A note on a class of higher order conformally covariant equations,, Discrete Contin. Dynam. Systems, 7 (2001), 275. doi: 10.3934/dcds.2001.7.275. Google Scholar [3] Sun-Yung A. Chang and P. Yang, On uniqueness of solutions of $n$-th order differential equations in conformal geometry,, Math. Res. Lett., 4 (1997), 91. doi: 10.4310/MRL.1997.v4.n1.a9. Google Scholar [4] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar [5] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order,, Reprint of the 1998 edition, (1998). Google Scholar [6] E. A. Gorin, Asymptotic properties of polynomials and algebraic functions of several variables,, Russ. Math. Surv., 16 (1961), 91. Google Scholar [7] C. R. Graham, R. Jenne, L. Mason and G. Sparling, Conformally invariant powers of the Laplacian. I. existence,, J. London Math. Soc., 46 (1992), 557. doi: 10.1112/jlms/s2-46.3.557. Google Scholar [8] T. Jin, A. Maalaoui, L. Martinazzi and J. Xiong, Existence and asymptotics for solutions of a non-local Q-curvature equation in dimension three,, to appear in Calc. Var. Partial Differential Equations, (2014). doi: 10.1007/s00526-014-0718-9. Google Scholar [9] C. S. Lin, A classification of solutions of a conformally invariant fourth order equation in $\mathbbR^n$,, Comment. Math. Helv., 73 (1998), 206. doi: 10.1007/s000140050052. Google Scholar [10] R. C. McOwen, The behavior of the Laplacian on weighted Sobolev spaces,, Comm. Pure Appl. Math., 32 (1979), 783. doi: 10.1002/cpa.3160320604. Google Scholar [11] L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant $Q$-curvature,, Rend. Lincei. Mat. Appl., 19 (2008), 279. doi: 10.4171/RLM/525. Google Scholar [12] L. Martinazzi, Classification of solutions to the higher order Liouville's equation on $\mathbbR^{2m}$,, Math. Z., 263 (2009), 307. doi: 10.1007/s00209-008-0419-1. Google Scholar [13] L. Martinazzi, Quantization for the prescribed Q-curvature equation on open domains,, Commun. Contemp. Math., 13 (2011), 533. doi: 10.1142/S0219199711004373. Google Scholar [14] L. Martinazzi, Conformal metrics on $\mathbbR^{2m}$ with constant Q-curvature and large volume,, Ann. Inst. Henri Poincaré (C), 30 (2013), 969. doi: 10.1016/j.anihpc.2012.12.007. Google Scholar [15] L. Martinazzi and M. Petrache, Asymptotics and quantization for a mean-field equation of higher order,, Comm. Partial Differential Equations, 35 (2010), 443. doi: 10.1080/03605300903296330. Google Scholar [16] F. Robert, Quantization effects for a fourth order equation of exponential growth in dimension four,, Proc. Roy. Soc. Edinburgh Sec. A, 137 (2007), 531. doi: 10.1017/S0308210506000096. Google Scholar [17] J. Wei and D. Ye, Nonradial solutions for a conformally invariant fourth order equation in $\mathbbR^4$,, Calc. Var. Partial Differential Equations, 32 (2008), 373. doi: 10.1007/s00526-007-0145-2. Google Scholar
 [1] Yaiza Canzani, A. Rod Gover, Dmitry Jakobson, Raphaël Ponge. Nullspaces of conformally invariant operators. Applications to $\boldsymbol{Q_k}$-curvature. Electronic Research Announcements, 2013, 20: 43-50. doi: 10.3934/era.2013.20.43 [2] Sun-Yung Alice Chang, Xi-Nan Ma, Paul Yang. Principal curvature estimates for the convex level sets of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2010, 28 (3) : 1151-1164. doi: 10.3934/dcds.2010.28.1151 [3] Lei Wei, Zhaosheng Feng. Isolated singularity for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 3239-3252. doi: 10.3934/dcds.2015.35.3239 [4] Yaiza Canzani, Dmitry Jakobson, Igor Wigman. Scalar curvature and $Q$-curvature of random metrics. Electronic Research Announcements, 2010, 17: 43-56. doi: 10.3934/era.2010.17.43 [5] Giuseppe Di Fazio, Maria Stella Fanciullo, Pietro Zamboni. Harnack inequality for degenerate elliptic equations and sum operators. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2363-2376. doi: 10.3934/cpaa.2015.14.2363 [6] Junping Shi, R. Shivaji. Semilinear elliptic equations with generalized cubic nonlinearities. Conference Publications, 2005, 2005 (Special) : 798-805. doi: 10.3934/proc.2005.2005.798 [7] Xavier Cabré, Manel Sanchón, Joel Spruck. A priori estimates for semistable solutions of semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 601-609. doi: 10.3934/dcds.2016.36.601 [8] Hwai-Chiuan Wang. On domains and their indexes with applications to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 447-467. doi: 10.3934/dcds.2007.19.447 [9] Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193-195. doi: 10.3934/proc.2013.2013.193 [10] Claudia Anedda, Giovanni Porru. Boundary estimates for solutions of weighted semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 3801-3817. doi: 10.3934/dcds.2012.32.3801 [11] Antonio Greco, Marcello Lucia. Gamma-star-shapedness for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2005, 4 (1) : 93-99. doi: 10.3934/cpaa.2005.4.93 [12] Marco Degiovanni, Michele Scaglia. A variational approach to semilinear elliptic equations with measure data. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1233-1248. doi: 10.3934/dcds.2011.31.1233 [13] Jiabao Su, Zhaoli Liu. A bounded resonance problem for semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2007, 19 (2) : 431-445. doi: 10.3934/dcds.2007.19.431 [14] Mousomi Bhakta, Debangana Mukherjee. Semilinear nonlocal elliptic equations with critical and supercritical exponents. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1741-1766. doi: 10.3934/cpaa.2017085 [15] Hwai-Chiuan Wang. Stability and symmetry breaking of solutions of semilinear elliptic equations. Conference Publications, 2005, 2005 (Special) : 886-894. doi: 10.3934/proc.2005.2005.886 [16] David L. Finn. Convexity of level curves for solutions to semilinear elliptic equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1335-1343. doi: 10.3934/cpaa.2008.7.1335 [17] Alberto Farina, Enrico Valdinoci. A pointwise gradient bound for elliptic equations on compact manifolds with nonnegative Ricci curvature. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1139-1144. doi: 10.3934/dcds.2011.30.1139 [18] Ali Maalaoui. Prescribing the Q-curvature on the sphere with conical singularities. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6307-6330. doi: 10.3934/dcds.2016074 [19] Liang Zhang, X. H. Tang, Yi Chen. Infinitely many solutions for a class of perturbed elliptic equations with nonlocal operators. Communications on Pure & Applied Analysis, 2017, 16 (3) : 823-842. doi: 10.3934/cpaa.2017039 [20] Zhuoran Du. Some properties of positive radial solutions for some semilinear elliptic equations. Communications on Pure & Applied Analysis, 2010, 9 (4) : 943-953. doi: 10.3934/cpaa.2010.9.943

2018 Impact Factor: 1.143