June  2015, 35(6): 2625-2657. doi: 10.3934/dcds.2015.35.2625

Control of crack propagation by shape-topological optimization

1. 

Department Mathematik, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstr. 11 (03.322), 91058 Erlangen, Germany

2. 

Institut Élie Cartan Nancy, UMR 7502 Université de Lorraine - CNRS, B.P. 70239, 54506 Vandoeuvre-Lès Nancy Cedex, France

3. 

Systems Research Institute, of the Polish Academy of Sciences, ul. Newelska 6, 01-447 Warszawa, Poland

Received  December 2013 Revised  July 2014 Published  December 2014

An elastic body weakened by small cracks is considered in the framework of unilateral variational problems in linearized elasticity. The frictionless contact conditions are prescribed on the crack lips in two spatial dimensions, or on the crack faces in three spatial dimensions. The weak solutions of the equilibrium boundary value problem for the elasticity problem are determined by minimization of the energy functional over the cone of admissible displacements. The associated elastic energy functional evaluated for the weak solutions is considered for the purpose of control of crack propagation. The singularities of the elastic displacement field at the crack front are characterized by the shape derivatives of the elastic energy with respect to the crack shape within the Griffith theory. The first order shape derivative of the elastic energy functional with respect to the crack shape, i.e., evaluated for a deformation field supported in an open neighbourhood of one of crack tips, is called the Griffith functional.
    The control of the crack front in the elastic body is performed by the optimum shape design technique. The Griffith functional is minimized with respect to the shape and the location of small inclusions in the body. The inclusions are located far from the crack. In order to minimize the Griffith functional over an admissible family of inclusions, the second order directional, mixed shape-topological derivatives of the elastic energy functional are evaluated.
    The domain decomposition technique [42] is applied to the shape [56] and topological [54,55] sensitivity analysis of variational inequalities.
    The nonlinear crack model in the framework of linear elasticity is considered in two and three spatial dimensions. The boundary value problem for the elastic displacement field takes the form of a variational inequality over the positive cone in a fractional Sobolev space. The variational inequality leads to a problem of metric projection over a polyhedric convex cone, so the concept of conical differentiability applies to shape and topological sensitivity analysis of variational inequalities under consideration.
Citation: Günter Leugering, Jan Sokołowski, Antoni Żochowski. Control of crack propagation by shape-topological optimization. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2625-2657. doi: 10.3934/dcds.2015.35.2625
References:
[1]

A. Ancona, Sur les espaces de Dirichlet: Principes, fonction de Green,, J. Math. Pures Appl., 54 (1975), 75. Google Scholar

[2]

N. Bubner, J. Sokołowski and J. Sprekels, Optimal boundary control problems for shape memory alloys under state constraints for stress and temperature,, Numer. Funct. Anal. Optim., 19 (1998), 489. doi: 10.1080/01630569808816840. Google Scholar

[3]

I. I. Argatov and J. Sokołowski, Asymptotics of the energy functional in the Signorini problem under small singular perturbation of the domain,, Zh. Vychisl. Mat. Mat. Fiz., 43 (2003), 744. Google Scholar

[4]

Z. Belhachmi, J.-M. Sac-Epée and J. Sokołowski, Approximation par la méthode des élement finit de la formulation en domaine régulière de problems de fissures,, C. R. Acad. Sci. Paris, 338 (2004), 499. doi: 10.1016/j.crma.2004.01.008. Google Scholar

[5]

Z. Belhachmi, J. M. Sac-Epée and J. Sokołowski, Mixed finite element methods for smooth domain formulation of crack problems,, SIAM Journal on Numerical Analysis, 43 (2005), 1295. doi: 10.1137/S0036142903429729. Google Scholar

[6]

A. Beurling and J. Deny, Dirichlet spaces,, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 208. doi: 10.1073/pnas.45.2.208. Google Scholar

[7]

P. Destuynder, Remarques sur le contrôle de la propagation des fissures en régime stationnaire,, C. R. Acad. Sci. Paris Sèr. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 308 (1989), 697. Google Scholar

[8]

G. Fichera, Existence theorems in elasticity,, in Festkörpermechanik/Mechanics of Solids, (1984), 347. doi: 10.1007/978-3-642-69567-4_3. Google Scholar

[9]

G. Fichera, Boundary value problems of elasticity with unilateral constraints,, in Festkörpermechanik/Mechanics of Solids, (1984), 391. doi: 10.1007/978-3-642-69567-4_4. Google Scholar

[10]

G. Frémiot, Eulerian semiderivatives of the eigenvalues for Laplacian in domains with cracks,, Adv. Math. Sci. Appl., 12 (2002), 115. Google Scholar

[11]

G. Frémiot and J. Sokołowski, Hadamard formula in nonsmooth domains and applications,, in Partial differential equations on multistructures (Luminy, 219 (2001), 99. Google Scholar

[12]

G. Frémiot and J. Sokołowski, Shape sensitivity analysis of problems with singularities,, in Shape optimization and optimal design (Cambridge, 216 (2001), 255. Google Scholar

[13]

G. Frémiot, W. Horn, A. Laurain, M. Rao and J. Sokołowski, On the analysis of boundary value problems in nonsmooth domains,, Dissertationes Mathematicae, 462 (2009). doi: 10.4064/dm462-0-1. Google Scholar

[14]

B. Hanouzet and J.-L. Joly, Méthodes d'ordre dans l'interprétation de certaines inéquations variationnelles et applications,, J. Funct. Anal., 34 (1979), 217. doi: 10.1016/0022-1236(79)90032-6. Google Scholar

[15]

A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities,, J. Math. Soc. Japan, 29 (1977), 615. doi: 10.2969/jmsj/02940615. Google Scholar

[16]

P. Hild, A. Münch and Y. Ousset, On the active control of crack growth in elastic media,, Comput. Methods Appl. Mech. Engrg., 198 (2008), 407. doi: 10.1016/j.cma.2008.08.010. Google Scholar

[17]

M. Hintermüller and A. Laurain, Optimal shape design subject to variational inequalities,, SIAM J. Control Optim., 49 (2011), 1015. doi: 10.1137/080745134. Google Scholar

[18]

M. Hintermüller and V. A. Kovtunenko, From shape variation to topology changes in constrained minimization: a velocity method based concept, in, Special issue on Advances in Shape and Topology Optimization: Theory, 26 (2011), 513. doi: 10.1080/10556788.2011.559548. Google Scholar

[19]

D. Hömberg, A. M. Khludnev and J. Sokołowski, Quasistationary problem for a cracked body with electrothermoconductivity,, Interfaces Free Bound., 3 (2001), 129. doi: 10.4171/IFB/36. Google Scholar

[20]

W. Horn, J. Sokołowski and J. Sprekels, A control problem with state constraints for a phase-field model,, Control Cybernet., 25 (1996), 1137. Google Scholar

[21]

A. M. Khludnev and J. Sokołowski, Modelling and Control in Solid Mechanics,, Birkhäuser, (1997). Google Scholar

[22]

A. M. Khludnev, K. Ohtsuka and J. Sokołowski, On derivative of energy functional for elastic bodies with a crack and unilateral conditions,, Quarterly Appl. Math., 60 (2002), 99. Google Scholar

[23]

A. M. Khludnev, A. A. Novotny, J. Sokołowski and A. Żochowski, Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions,, J. Mech. Phys. Solids, 57 (2009), 1718. doi: 10.1016/j.jmps.2009.07.003. Google Scholar

[24]

A. M. Khludnev and J. Sokołowski, Smooth domain method for crack problems,, Quart. Appl. Math., 62 (2004), 401. Google Scholar

[25]

A. M. Khludnev and J. Sokołowski, On solvability of boundary value problems in elastoplasicity,, Control and Cybernetics, 27 (1998), 311. Google Scholar

[26]

A. M. Khludnev, Optimal control of crack growth in elastic body with inclusions,, Europ. J. Mech. A/Solids, 29 (2010), 392. doi: 10.1016/j.euromechsol.2009.10.010. Google Scholar

[27]

A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids,, WIT Press, (2000). Google Scholar

[28]

A. M. Khludnev and G. Leugering, Optimal control of cracks in elastic bodies with thin rigid inclusions,, Z. Angew. Math. Mech., 91 (2011), 125. doi: 10.1002/zamm.201000058. Google Scholar

[29]

A. M. Khludnev, G. Leugering and M. Specovius-Neugebauer, Optimal control of inclusion and crack shapes in elastic bodies,, Journal of Optimization Theory and Applications, 155 (2012), 54. doi: 10.1007/s10957-012-0053-2. Google Scholar

[30]

A. M. Khludnev and J. Sokołowski, Griffith formulae for elasticity systems with unilateral conditions in domains with cracks,, Eur. J. Mech. A Solids, 19 (2000), 105. doi: 10.1016/S0997-7538(00)00138-8. Google Scholar

[31]

A. M. Khludnev and J. Sokołowski, Griffith formula and Rice-Cherepanov's integral for elliptic equations with unilateral conditions in nonsmooth domains, in, Optimal control of partial differential equations (Chemnitz, 133 (1999), 211. Google Scholar

[32]

A. M. Khludnev and J. Sokołowski, The Griffith formula and the Rice-Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains,, European J. Appl. Math., 10 (1999), 379. doi: 10.1017/S0956792599003885. Google Scholar

[33]

A. M. Khludnev, J. Sokołowski and K. Szulc, Shape and topological sensitivity analysis in domains with cracks,, Appl. Math., 55 (2010), 433. doi: 10.1007/s10492-010-0018-4. Google Scholar

[34]

T. Lewiński and J. Sokołowski, Energy change due to the appearance of cavities in elastic solids,, International Journal of Solids and Structures, 40 (2003), 1765. Google Scholar

[35]

G. Leugering, M. Prechtel, P. Steinmann and M. Stingl, A cohesive crack propagation model: Mathematical theory and numerical solution,, Commun. Pure Appl. Anal., 12 (2013), 1705. doi: 10.3934/cpaa.2013.12.1705. Google Scholar

[36]

F. Mignot, Contrôle dans les inéquations variationelles elliptiques,, J. Functional Analysis, 22 (1976), 130. doi: 10.1016/0022-1236(76)90017-3. Google Scholar

[37]

A. Münch and P. Pedregal, Relaxation of an optimal design problem in fracture mechanics: The anti-plane case,, ESAIM Control Optim. Calc. Var., 16 (2010), 719. doi: 10.1051/cocv/2009019. Google Scholar

[38]

S. A. Nazarov and J. Sokołowski, On asymptotic analysis of spectral problems in elasticity,, Lat. Am. J. Solids Struct., 8 (2011), 27. doi: 10.1590/S1679-78252011000100003. Google Scholar

[39]

S. A. Nazarov, J. Sokołowski and M. Specovius-Neugebauer, Polarization matrices in anisotropic heterogeneous elasticity,, Asymptot. Anal., 68 (2010), 189. Google Scholar

[40]

S. A. Nazarov and J. Sokołowski, Shape sensitivity analysis of eigenvalues revisited,, Control Cybernet., 37 (2008), 999. Google Scholar

[41]

S. A. Nazarov and J. Sokołowski, Spectral problems in the shape optimisation. Singular boundary perturbations,, Asymptot. Anal., 56 (2008), 159. Google Scholar

[42]

A. A. Novotny and J. Sokołowski, Topological Derivatives in Shape Optimization,, Series: Interaction of Mechanics and Mathematics, (2013). doi: 10.1007/978-3-642-35245-4. Google Scholar

[43]

P. Plotnikov and J. Sokołowski, Compressible Navier-Stokes Equations. Theory and Shape Optimization,, Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], 73 (2012). doi: 10.1007/978-3-0348-0367-0. Google Scholar

[44]

M. Prechtel, G. Leugering, P. Steinmann and M. Stingl, Towards optimization of crack resistance of composite materials by adjusting of fiber shapes,, Engineering Fracture Mechanics, 78 (2011), 944. doi: 10.1016/j.engfracmech.2011.01.007. Google Scholar

[45]

M. Prechtel, P. Leiva Ronda, R. Janisch, G. Leugering, A. Hartmaier and P. Steinmann, Cohesive Element Model for Simulation of Crack Growth in Composite Materials,, International Conference on crack paths, (2009). Google Scholar

[46]

M. Prechtel, P. Leiva Ronda, R. Janisch, A. Hartmaier, G. Leugering, P. Steinmann and M. Stingl, Simulation of fracture in heterogeneous elastic materials with cohesive zone models,, Int. J. Fract., 168 (2010), 15. doi: 10.1007/s10704-010-9552-z. Google Scholar

[47]

G. Leugering, M. Prechtel, P. Steinmann and M. Stingl, A cohesive crack propagation model: Mathematical theory and numerical solution,, Commun. Pure Appl. Anal., 12 (2013), 1705. doi: 10.3934/cpaa.2013.12.1705. Google Scholar

[48]

V. V. Saurin, Shape design sensitivity analysis for fracture conditions,, Computers and Structures, 76 (2001), 399. doi: 10.1016/S0045-7949(99)00154-6. Google Scholar

[49]

S. Seelecke, C. Büskens, I. Müller and J. Sprekels, Real-time optimal control of shape memory alloy actuators in smart structure, in, Online Optimization of Large Scale Systems: State of the Art, (2001), 93. Google Scholar

[50]

J. Sokołowski and J. Sprekels, Control problems for shape memory alloys with constraints on the shear strain, in, Control of partial differential equations (Trento, 165 (1994), 189. Google Scholar

[51]

J. Sokołowski and J. Sprekels, Control problems with state constraints for shape memory alloys,, Math. Methods Appl. Sci., 17 (1994), 943. doi: 10.1002/mma.1670171204. Google Scholar

[52]

J. Sokołowski and J. Sprekels, Dynamical shape control of nonlinear thin rods, in, Optimal control of partial differential equations (Irsee, 149 (1991), 202. doi: 10.1007/BFb0043225. Google Scholar

[53]

J. Sokołowski and J. Sprekels, Dynamical shape control and the stabilization of nonlinear thin rods,, Math. Methods Appl. Sci., 14 (1991), 63. doi: 10.1002/mma.1670140104. Google Scholar

[54]

J. Sokołowski and A. Żochowski, Modelling of topological derivatives for contact problems,, Numer. Math., 102 (2005), 145. doi: 10.1007/s00211-005-0635-0. Google Scholar

[55]

J. Sokołowski and A. Żochowski, Topological derivatives for optimization of plane elasticity contact problems,, Engineering Analysis with Boundary Elements, 32 (2008), 900. Google Scholar

[56]

J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis,, Springer Ser. Comput. Math. 16, 16 (1992). Google Scholar

show all references

References:
[1]

A. Ancona, Sur les espaces de Dirichlet: Principes, fonction de Green,, J. Math. Pures Appl., 54 (1975), 75. Google Scholar

[2]

N. Bubner, J. Sokołowski and J. Sprekels, Optimal boundary control problems for shape memory alloys under state constraints for stress and temperature,, Numer. Funct. Anal. Optim., 19 (1998), 489. doi: 10.1080/01630569808816840. Google Scholar

[3]

I. I. Argatov and J. Sokołowski, Asymptotics of the energy functional in the Signorini problem under small singular perturbation of the domain,, Zh. Vychisl. Mat. Mat. Fiz., 43 (2003), 744. Google Scholar

[4]

Z. Belhachmi, J.-M. Sac-Epée and J. Sokołowski, Approximation par la méthode des élement finit de la formulation en domaine régulière de problems de fissures,, C. R. Acad. Sci. Paris, 338 (2004), 499. doi: 10.1016/j.crma.2004.01.008. Google Scholar

[5]

Z. Belhachmi, J. M. Sac-Epée and J. Sokołowski, Mixed finite element methods for smooth domain formulation of crack problems,, SIAM Journal on Numerical Analysis, 43 (2005), 1295. doi: 10.1137/S0036142903429729. Google Scholar

[6]

A. Beurling and J. Deny, Dirichlet spaces,, Proc. Nat. Acad. Sci. U.S.A., 45 (1959), 208. doi: 10.1073/pnas.45.2.208. Google Scholar

[7]

P. Destuynder, Remarques sur le contrôle de la propagation des fissures en régime stationnaire,, C. R. Acad. Sci. Paris Sèr. II Méc. Phys. Chim. Sci. Univers Sci. Terre, 308 (1989), 697. Google Scholar

[8]

G. Fichera, Existence theorems in elasticity,, in Festkörpermechanik/Mechanics of Solids, (1984), 347. doi: 10.1007/978-3-642-69567-4_3. Google Scholar

[9]

G. Fichera, Boundary value problems of elasticity with unilateral constraints,, in Festkörpermechanik/Mechanics of Solids, (1984), 391. doi: 10.1007/978-3-642-69567-4_4. Google Scholar

[10]

G. Frémiot, Eulerian semiderivatives of the eigenvalues for Laplacian in domains with cracks,, Adv. Math. Sci. Appl., 12 (2002), 115. Google Scholar

[11]

G. Frémiot and J. Sokołowski, Hadamard formula in nonsmooth domains and applications,, in Partial differential equations on multistructures (Luminy, 219 (2001), 99. Google Scholar

[12]

G. Frémiot and J. Sokołowski, Shape sensitivity analysis of problems with singularities,, in Shape optimization and optimal design (Cambridge, 216 (2001), 255. Google Scholar

[13]

G. Frémiot, W. Horn, A. Laurain, M. Rao and J. Sokołowski, On the analysis of boundary value problems in nonsmooth domains,, Dissertationes Mathematicae, 462 (2009). doi: 10.4064/dm462-0-1. Google Scholar

[14]

B. Hanouzet and J.-L. Joly, Méthodes d'ordre dans l'interprétation de certaines inéquations variationnelles et applications,, J. Funct. Anal., 34 (1979), 217. doi: 10.1016/0022-1236(79)90032-6. Google Scholar

[15]

A. Haraux, How to differentiate the projection on a convex set in Hilbert space. Some applications to variational inequalities,, J. Math. Soc. Japan, 29 (1977), 615. doi: 10.2969/jmsj/02940615. Google Scholar

[16]

P. Hild, A. Münch and Y. Ousset, On the active control of crack growth in elastic media,, Comput. Methods Appl. Mech. Engrg., 198 (2008), 407. doi: 10.1016/j.cma.2008.08.010. Google Scholar

[17]

M. Hintermüller and A. Laurain, Optimal shape design subject to variational inequalities,, SIAM J. Control Optim., 49 (2011), 1015. doi: 10.1137/080745134. Google Scholar

[18]

M. Hintermüller and V. A. Kovtunenko, From shape variation to topology changes in constrained minimization: a velocity method based concept, in, Special issue on Advances in Shape and Topology Optimization: Theory, 26 (2011), 513. doi: 10.1080/10556788.2011.559548. Google Scholar

[19]

D. Hömberg, A. M. Khludnev and J. Sokołowski, Quasistationary problem for a cracked body with electrothermoconductivity,, Interfaces Free Bound., 3 (2001), 129. doi: 10.4171/IFB/36. Google Scholar

[20]

W. Horn, J. Sokołowski and J. Sprekels, A control problem with state constraints for a phase-field model,, Control Cybernet., 25 (1996), 1137. Google Scholar

[21]

A. M. Khludnev and J. Sokołowski, Modelling and Control in Solid Mechanics,, Birkhäuser, (1997). Google Scholar

[22]

A. M. Khludnev, K. Ohtsuka and J. Sokołowski, On derivative of energy functional for elastic bodies with a crack and unilateral conditions,, Quarterly Appl. Math., 60 (2002), 99. Google Scholar

[23]

A. M. Khludnev, A. A. Novotny, J. Sokołowski and A. Żochowski, Shape and topology sensitivity analysis for cracks in elastic bodies on boundaries of rigid inclusions,, J. Mech. Phys. Solids, 57 (2009), 1718. doi: 10.1016/j.jmps.2009.07.003. Google Scholar

[24]

A. M. Khludnev and J. Sokołowski, Smooth domain method for crack problems,, Quart. Appl. Math., 62 (2004), 401. Google Scholar

[25]

A. M. Khludnev and J. Sokołowski, On solvability of boundary value problems in elastoplasicity,, Control and Cybernetics, 27 (1998), 311. Google Scholar

[26]

A. M. Khludnev, Optimal control of crack growth in elastic body with inclusions,, Europ. J. Mech. A/Solids, 29 (2010), 392. doi: 10.1016/j.euromechsol.2009.10.010. Google Scholar

[27]

A. M. Khludnev and V. A. Kovtunenko, Analysis of Cracks in Solids,, WIT Press, (2000). Google Scholar

[28]

A. M. Khludnev and G. Leugering, Optimal control of cracks in elastic bodies with thin rigid inclusions,, Z. Angew. Math. Mech., 91 (2011), 125. doi: 10.1002/zamm.201000058. Google Scholar

[29]

A. M. Khludnev, G. Leugering and M. Specovius-Neugebauer, Optimal control of inclusion and crack shapes in elastic bodies,, Journal of Optimization Theory and Applications, 155 (2012), 54. doi: 10.1007/s10957-012-0053-2. Google Scholar

[30]

A. M. Khludnev and J. Sokołowski, Griffith formulae for elasticity systems with unilateral conditions in domains with cracks,, Eur. J. Mech. A Solids, 19 (2000), 105. doi: 10.1016/S0997-7538(00)00138-8. Google Scholar

[31]

A. M. Khludnev and J. Sokołowski, Griffith formula and Rice-Cherepanov's integral for elliptic equations with unilateral conditions in nonsmooth domains, in, Optimal control of partial differential equations (Chemnitz, 133 (1999), 211. Google Scholar

[32]

A. M. Khludnev and J. Sokołowski, The Griffith formula and the Rice-Cherepanov integral for crack problems with unilateral conditions in nonsmooth domains,, European J. Appl. Math., 10 (1999), 379. doi: 10.1017/S0956792599003885. Google Scholar

[33]

A. M. Khludnev, J. Sokołowski and K. Szulc, Shape and topological sensitivity analysis in domains with cracks,, Appl. Math., 55 (2010), 433. doi: 10.1007/s10492-010-0018-4. Google Scholar

[34]

T. Lewiński and J. Sokołowski, Energy change due to the appearance of cavities in elastic solids,, International Journal of Solids and Structures, 40 (2003), 1765. Google Scholar

[35]

G. Leugering, M. Prechtel, P. Steinmann and M. Stingl, A cohesive crack propagation model: Mathematical theory and numerical solution,, Commun. Pure Appl. Anal., 12 (2013), 1705. doi: 10.3934/cpaa.2013.12.1705. Google Scholar

[36]

F. Mignot, Contrôle dans les inéquations variationelles elliptiques,, J. Functional Analysis, 22 (1976), 130. doi: 10.1016/0022-1236(76)90017-3. Google Scholar

[37]

A. Münch and P. Pedregal, Relaxation of an optimal design problem in fracture mechanics: The anti-plane case,, ESAIM Control Optim. Calc. Var., 16 (2010), 719. doi: 10.1051/cocv/2009019. Google Scholar

[38]

S. A. Nazarov and J. Sokołowski, On asymptotic analysis of spectral problems in elasticity,, Lat. Am. J. Solids Struct., 8 (2011), 27. doi: 10.1590/S1679-78252011000100003. Google Scholar

[39]

S. A. Nazarov, J. Sokołowski and M. Specovius-Neugebauer, Polarization matrices in anisotropic heterogeneous elasticity,, Asymptot. Anal., 68 (2010), 189. Google Scholar

[40]

S. A. Nazarov and J. Sokołowski, Shape sensitivity analysis of eigenvalues revisited,, Control Cybernet., 37 (2008), 999. Google Scholar

[41]

S. A. Nazarov and J. Sokołowski, Spectral problems in the shape optimisation. Singular boundary perturbations,, Asymptot. Anal., 56 (2008), 159. Google Scholar

[42]

A. A. Novotny and J. Sokołowski, Topological Derivatives in Shape Optimization,, Series: Interaction of Mechanics and Mathematics, (2013). doi: 10.1007/978-3-642-35245-4. Google Scholar

[43]

P. Plotnikov and J. Sokołowski, Compressible Navier-Stokes Equations. Theory and Shape Optimization,, Mathematics Institute of the Polish Academy of Sciences. Mathematical Monographs (New Series)], 73 (2012). doi: 10.1007/978-3-0348-0367-0. Google Scholar

[44]

M. Prechtel, G. Leugering, P. Steinmann and M. Stingl, Towards optimization of crack resistance of composite materials by adjusting of fiber shapes,, Engineering Fracture Mechanics, 78 (2011), 944. doi: 10.1016/j.engfracmech.2011.01.007. Google Scholar

[45]

M. Prechtel, P. Leiva Ronda, R. Janisch, G. Leugering, A. Hartmaier and P. Steinmann, Cohesive Element Model for Simulation of Crack Growth in Composite Materials,, International Conference on crack paths, (2009). Google Scholar

[46]

M. Prechtel, P. Leiva Ronda, R. Janisch, A. Hartmaier, G. Leugering, P. Steinmann and M. Stingl, Simulation of fracture in heterogeneous elastic materials with cohesive zone models,, Int. J. Fract., 168 (2010), 15. doi: 10.1007/s10704-010-9552-z. Google Scholar

[47]

G. Leugering, M. Prechtel, P. Steinmann and M. Stingl, A cohesive crack propagation model: Mathematical theory and numerical solution,, Commun. Pure Appl. Anal., 12 (2013), 1705. doi: 10.3934/cpaa.2013.12.1705. Google Scholar

[48]

V. V. Saurin, Shape design sensitivity analysis for fracture conditions,, Computers and Structures, 76 (2001), 399. doi: 10.1016/S0045-7949(99)00154-6. Google Scholar

[49]

S. Seelecke, C. Büskens, I. Müller and J. Sprekels, Real-time optimal control of shape memory alloy actuators in smart structure, in, Online Optimization of Large Scale Systems: State of the Art, (2001), 93. Google Scholar

[50]

J. Sokołowski and J. Sprekels, Control problems for shape memory alloys with constraints on the shear strain, in, Control of partial differential equations (Trento, 165 (1994), 189. Google Scholar

[51]

J. Sokołowski and J. Sprekels, Control problems with state constraints for shape memory alloys,, Math. Methods Appl. Sci., 17 (1994), 943. doi: 10.1002/mma.1670171204. Google Scholar

[52]

J. Sokołowski and J. Sprekels, Dynamical shape control of nonlinear thin rods, in, Optimal control of partial differential equations (Irsee, 149 (1991), 202. doi: 10.1007/BFb0043225. Google Scholar

[53]

J. Sokołowski and J. Sprekels, Dynamical shape control and the stabilization of nonlinear thin rods,, Math. Methods Appl. Sci., 14 (1991), 63. doi: 10.1002/mma.1670140104. Google Scholar

[54]

J. Sokołowski and A. Żochowski, Modelling of topological derivatives for contact problems,, Numer. Math., 102 (2005), 145. doi: 10.1007/s00211-005-0635-0. Google Scholar

[55]

J. Sokołowski and A. Żochowski, Topological derivatives for optimization of plane elasticity contact problems,, Engineering Analysis with Boundary Elements, 32 (2008), 900. Google Scholar

[56]

J. Sokołowski and J.-P. Zolésio, Introduction to Shape Optimization. Shape Sensitivity Analysis,, Springer Ser. Comput. Math. 16, 16 (1992). Google Scholar

[1]

Barbara Kaltenbacher, Gunther Peichl. The shape derivative for an optimization problem in lithotripsy. Evolution Equations & Control Theory, 2016, 5 (3) : 399-430. doi: 10.3934/eect.2016011

[2]

Barbara Brandolini, Carlo Nitsch, Cristina Trombetti. Shape optimization for Monge-Ampère equations via domain derivative. Discrete & Continuous Dynamical Systems - S, 2011, 4 (4) : 825-831. doi: 10.3934/dcdss.2011.4.825

[3]

Christopher J. Larsen. Local minimality and crack prediction in quasi-static Griffith fracture evolution. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 121-129. doi: 10.3934/dcdss.2013.6.121

[4]

Fangfang Dong, Yunmei Chen. A fractional-order derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 27-50. doi: 10.3934/ipi.2016.10.27

[5]

Wenyan Zhang, Shu Xu, Shengji Li, Xuexiang Huang. Generalized weak sharp minima of variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2013, 9 (3) : 621-630. doi: 10.3934/jimo.2013.9.621

[6]

Dorothee Knees, Andreas Schröder. Computational aspects of quasi-static crack propagation. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 63-99. doi: 10.3934/dcdss.2013.6.63

[7]

Matteo Negri. Crack propagation by a regularization of the principle of local symmetry. Discrete & Continuous Dynamical Systems - S, 2013, 6 (1) : 147-165. doi: 10.3934/dcdss.2013.6.147

[8]

Frank Jochmann. A variational inequality in Bean's model for superconductors with displacement current. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 545-565. doi: 10.3934/dcds.2009.25.545

[9]

Krzysztof Frączek. Polynomial growth of the derivative for diffeomorphisms on tori. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 489-516. doi: 10.3934/dcds.2004.11.489

[10]

X. X. Huang, Xiaoqi Yang. Levitin-Polyak well-posedness in generalized variational inequality problems with functional constraints. Journal of Industrial & Management Optimization, 2007, 3 (4) : 671-684. doi: 10.3934/jimo.2007.3.671

[11]

G. Leugering, Marina Prechtel, Paul Steinmann, Michael Stingl. A cohesive crack propagation model: Mathematical theory and numerical solution. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1705-1729. doi: 10.3934/cpaa.2013.12.1705

[12]

Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709

[13]

Gary Lieberman. Oblique derivative problems for elliptic and parabolic equations. Communications on Pure & Applied Analysis, 2013, 12 (6) : 2409-2444. doi: 10.3934/cpaa.2013.12.2409

[14]

Katarzyna Grabowska, Luca Vitagliano. Tulczyjew triples in higher derivative field theory. Journal of Geometric Mechanics, 2015, 7 (1) : 1-33. doi: 10.3934/jgm.2015.7.1

[15]

Alexei Pokrovskii, Oleg Rasskazov. Structure of index sequences for mappings with an asymptotic derivative. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 653-670. doi: 10.3934/dcds.2007.17.653

[16]

Benjamin Webb. Dynamics of functions with an eventual negative Schwarzian derivative. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1393-1408. doi: 10.3934/dcds.2009.24.1393

[17]

Takeshi Fukao. Variational inequality for the Stokes equations with constraint. Conference Publications, 2011, 2011 (Special) : 437-446. doi: 10.3934/proc.2011.2011.437

[18]

Hideo Takaoka. Energy transfer model for the derivative nonlinear Schrödinger equations on the torus. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5819-5841. doi: 10.3934/dcds.2017253

[19]

A. M. Bagirov, Moumita Ghosh, Dean Webb. A derivative-free method for linearly constrained nonsmooth optimization. Journal of Industrial & Management Optimization, 2006, 2 (3) : 319-338. doi: 10.3934/jimo.2006.2.319

[20]

Yoshikazu Giga. Interior derivative blow-up for quasilinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 1995, 1 (3) : 449-461. doi: 10.3934/dcds.1995.1.449

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (26)
  • HTML views (0)
  • Cited by (8)

[Back to Top]