May  2015, 35(5): 1921-1932. doi: 10.3934/dcds.2015.35.1921

Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem

1. 

Department of Mathematics, College of Science, Hohai University, Nanjing 210098, China, China

2. 

Departamento de Matemática Aplicada, Universidad de Granada, 18071 Granada

Received  January 2014 Revised  October 2014 Published  December 2014

For the Gylden-Meshcherskii-type problem with a periodically cha-nging gravitational parameter, we prove the existence of radially periodic solutions with high angular momentum, which are Lyapunov stable in the radial direction.
Citation: Jifeng Chu, Pedro J. Torres, Feng Wang. Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1921-1932. doi: 10.3934/dcds.2015.35.1921
References:
[1]

A. A. Bekov, Periodic solutions of the Gylden-Meshcherskii problem,, Astron. Rep., 37 (1993), 651. Google Scholar

[2]

J. Chu and M. Li, Twist periodic solutions of second order singular differential equations,, J. Math. Anal. Appl., 355 (2009), 830. doi: 10.1016/j.jmaa.2009.02.033. Google Scholar

[3]

J. Chu, P. J. Torres and M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems,, J. Differential Equations, 239 (2007), 196. doi: 10.1016/j.jde.2007.05.007. Google Scholar

[4]

J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions,, Discrete Contin. Dyn. Syst., 21 (2008), 1071. doi: 10.3934/dcds.2008.21.1071. Google Scholar

[5]

E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions,, J. Dynam. Differential Equations, 6 (1994), 631. doi: 10.1007/BF02218851. Google Scholar

[6]

C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results,, in Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, (1996), 1. Google Scholar

[7]

M. A. del Pino and R. F. Manásevich, Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity,, J. Differential Equations, 103 (1993), 260. doi: 10.1006/jdeq.1993.1050. Google Scholar

[8]

A. Deprit, The secular accelerations in Gylden's problem,, Celestial Mechanics, 31 (1983), 1. doi: 10.1007/BF01272557. Google Scholar

[9]

A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235. doi: 10.1016/j.jde.2007.11.005. Google Scholar

[10]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485. doi: 10.1016/j.na.2010.12.004. Google Scholar

[11]

A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: The repulsive case,, Adv. Nonlinear Stud., 11 (2011), 853. Google Scholar

[12]

A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems,, Proc. Amer. Math. Soc., 140 (2012), 1331. doi: 10.1090/S0002-9939-2011-10992-4. Google Scholar

[13]

A. Fonda, R. Toader and F. Zanolin, Periodic solutions of singular radially symmetric systems with superlinear growth,, Ann. Mat. Pura Appl., 191 (2012), 181. doi: 10.1007/s10231-010-0178-6. Google Scholar

[14]

A. Fonda and A. J. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force,, Discrete Contin. Dyn. Syst., 29 (2011), 169. doi: 10.3934/dcds.2011.29.169. Google Scholar

[15]

D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations,, J. Differential Equations, 211 (2005), 282. doi: 10.1016/j.jde.2004.10.031. Google Scholar

[16]

A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities,, Proc. Amer. Math. Soc., 99 (1987), 109. doi: 10.1090/S0002-9939-1987-0866438-7. Google Scholar

[17]

J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the forced pendulum,, SIAM J. Math. Anal., 35 (2003), 844. doi: 10.1137/S003614100241037X. Google Scholar

[18]

J. Lei, P. J. Torres and M. Zhang, Twist character of the fourth order resonant periodic solution,, J. Dynam. Differential Equations, 17 (2005), 21. doi: 10.1007/s10884-005-2937-4. Google Scholar

[19]

Q. Liu and D. Qian, Nonlinear dynamics of differential equations with attractive-repulsive singularities and small time-dependent coefficients,, Math. Methods Appl. Sci., 36 (2013), 227. doi: 10.1002/mma.2594. Google Scholar

[20]

R. Ortega, Periodic solution of a Newtonian equation: Stability by the third approximation,, J. Differential Equations, 128 (1996), 491. doi: 10.1006/jdeq.1996.0103. Google Scholar

[21]

A. Pal, D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The Gylden-type problem revisited: More refined analytical solutions,, Astron. Nachr., 327 (2006), 304. doi: 10.1002/asna.200510537. Google Scholar

[22]

I. Rachunková, M. Tvrdý and I. Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems,, J. Differential Equations, 176 (2001), 445. doi: 10.1006/jdeq.2000.3995. Google Scholar

[23]

J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems,, Applied Math. Sci., 59 (1985). doi: 10.1007/978-1-4757-4575-7. Google Scholar

[24]

W. C. Saslaw, Motion around a source whose luminosity changes,, The Astrophysical Journal, 226 (1978), 240. doi: 10.1086/156603. Google Scholar

[25]

D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically changing equivalent gravitational parameter,, Astron. Nachr., 313 (1992), 257. doi: 10.1002/asna.2113130408. Google Scholar

[26]

D. Selaru and V. Mioc, Le probleme de Gyldén du point de vue de la théorie KAM,, C. R. Acad. Sci. Paris, 325 (1997), 487. Google Scholar

[27]

D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The periodic Gyldén-type problem in Astrophysics,, AIP Conf. Proc., 895 (2007), 163. Google Scholar

[28]

C. Siegel and J. Moser, Lectures on Celestial Mechanics,, Springer-Verlag, (1971). Google Scholar

[29]

S. Solimini, On forced dynamical systems with a singularity of repulsive type,, Nonlinear Anal., 14 (1990), 489. doi: 10.1016/0362-546X(90)90037-H. Google Scholar

[30]

P. J. Torres, Twist solutions of a Hill's equations with singular term,, Adv. Nonlinear Stud., 2 (2002), 279. Google Scholar

[31]

P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643. doi: 10.1016/S0022-0396(02)00152-3. Google Scholar

[32]

P. J. Torres, Weak singularities may help periodic solutions to exist,, J. Differential Equations, 232 (2007), 277. doi: 10.1016/j.jde.2006.08.006. Google Scholar

[33]

P. J. Torres, Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity,, Proc. Royal Soc. Edinburgh Sect. A., 137 (2007), 195. doi: 10.1017/S0308210505000739. Google Scholar

[34]

P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle,, Math. Nachr., 251 (2003), 101. doi: 10.1002/mana.200310033. Google Scholar

[35]

P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations,, Nonlinear Anal., 56 (2004), 591. doi: 10.1016/j.na.2003.10.005. Google Scholar

[36]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Universitext, (1996). doi: 10.1007/978-3-642-61453-8. Google Scholar

[37]

P. Yan and M. Zhang, Higher order nonresonance for differential equations with singularities,, Math. Methods Appl. Sci., 26 (2003), 1067. doi: 10.1002/mma.413. Google Scholar

[38]

M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation,, J. London Math. Soc., 67 (2003), 137. doi: 10.1112/S0024610702003939. Google Scholar

[39]

M. Zhang, Periodic solutions of equations of Ermakov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57. Google Scholar

show all references

References:
[1]

A. A. Bekov, Periodic solutions of the Gylden-Meshcherskii problem,, Astron. Rep., 37 (1993), 651. Google Scholar

[2]

J. Chu and M. Li, Twist periodic solutions of second order singular differential equations,, J. Math. Anal. Appl., 355 (2009), 830. doi: 10.1016/j.jmaa.2009.02.033. Google Scholar

[3]

J. Chu, P. J. Torres and M. Zhang, Periodic solutions of second order non-autonomous singular dynamical systems,, J. Differential Equations, 239 (2007), 196. doi: 10.1016/j.jde.2007.05.007. Google Scholar

[4]

J. Chu and M. Zhang, Rotation numbers and Lyapunov stability of elliptic periodic solutions,, Discrete Contin. Dyn. Syst., 21 (2008), 1071. doi: 10.3934/dcds.2008.21.1071. Google Scholar

[5]

E. N. Dancer and R. Ortega, The index of Lyapunov stable fixed points in two dimensions,, J. Dynam. Differential Equations, 6 (1994), 631. doi: 10.1007/BF02218851. Google Scholar

[6]

C. De Coster and P. Habets, Upper and lower solutions in the theory of ODE boundary value problems: classical and recent results,, in Nonlinear Analysis and Boundary Value Problems for Ordinary Differential Equations, (1996), 1. Google Scholar

[7]

M. A. del Pino and R. F. Manásevich, Infinitely many $T$-periodic solutions for a problem arising in nonlinear elasticity,, J. Differential Equations, 103 (1993), 260. doi: 10.1006/jdeq.1993.1050. Google Scholar

[8]

A. Deprit, The secular accelerations in Gylden's problem,, Celestial Mechanics, 31 (1983), 1. doi: 10.1007/BF01272557. Google Scholar

[9]

A. Fonda and R. Toader, Periodic orbits of radially symmetric Keplerian-like systems: A topological degree approach,, J. Differential Equations, 244 (2008), 3235. doi: 10.1016/j.jde.2007.11.005. Google Scholar

[10]

A. Fonda and R. Toader, Radially symmetric systems with a singularity and asymptotically linear growth,, Nonlinear Anal., 74 (2011), 2485. doi: 10.1016/j.na.2010.12.004. Google Scholar

[11]

A. Fonda and R. Toader, Periodic orbits of radially symmetric systems with a singularity: The repulsive case,, Adv. Nonlinear Stud., 11 (2011), 853. Google Scholar

[12]

A. Fonda and R. Toader, Periodic solutions of radially symmetric perturbations of Newtonian systems,, Proc. Amer. Math. Soc., 140 (2012), 1331. doi: 10.1090/S0002-9939-2011-10992-4. Google Scholar

[13]

A. Fonda, R. Toader and F. Zanolin, Periodic solutions of singular radially symmetric systems with superlinear growth,, Ann. Mat. Pura Appl., 191 (2012), 181. doi: 10.1007/s10231-010-0178-6. Google Scholar

[14]

A. Fonda and A. J. Ureña, Periodic, subharmonic, and quasi-periodic oscillations under the action of a central force,, Discrete Contin. Dyn. Syst., 29 (2011), 169. doi: 10.3934/dcds.2011.29.169. Google Scholar

[15]

D. Jiang, J. Chu and M. Zhang, Multiplicity of positive periodic solutions to superlinear repulsive singular equations,, J. Differential Equations, 211 (2005), 282. doi: 10.1016/j.jde.2004.10.031. Google Scholar

[16]

A. C. Lazer and S. Solimini, On periodic solutions of nonlinear differential equations with singularities,, Proc. Amer. Math. Soc., 99 (1987), 109. doi: 10.1090/S0002-9939-1987-0866438-7. Google Scholar

[17]

J. Lei, X. Li, P. Yan and M. Zhang, Twist character of the least amplitude periodic solution of the forced pendulum,, SIAM J. Math. Anal., 35 (2003), 844. doi: 10.1137/S003614100241037X. Google Scholar

[18]

J. Lei, P. J. Torres and M. Zhang, Twist character of the fourth order resonant periodic solution,, J. Dynam. Differential Equations, 17 (2005), 21. doi: 10.1007/s10884-005-2937-4. Google Scholar

[19]

Q. Liu and D. Qian, Nonlinear dynamics of differential equations with attractive-repulsive singularities and small time-dependent coefficients,, Math. Methods Appl. Sci., 36 (2013), 227. doi: 10.1002/mma.2594. Google Scholar

[20]

R. Ortega, Periodic solution of a Newtonian equation: Stability by the third approximation,, J. Differential Equations, 128 (1996), 491. doi: 10.1006/jdeq.1996.0103. Google Scholar

[21]

A. Pal, D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The Gylden-type problem revisited: More refined analytical solutions,, Astron. Nachr., 327 (2006), 304. doi: 10.1002/asna.200510537. Google Scholar

[22]

I. Rachunková, M. Tvrdý and I. Vrkoč, Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems,, J. Differential Equations, 176 (2001), 445. doi: 10.1006/jdeq.2000.3995. Google Scholar

[23]

J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems,, Applied Math. Sci., 59 (1985). doi: 10.1007/978-1-4757-4575-7. Google Scholar

[24]

W. C. Saslaw, Motion around a source whose luminosity changes,, The Astrophysical Journal, 226 (1978), 240. doi: 10.1086/156603. Google Scholar

[25]

D. Selaru, C. Cucu-Dumitrescu and V. Mioc, On a two-body problem with periodically changing equivalent gravitational parameter,, Astron. Nachr., 313 (1992), 257. doi: 10.1002/asna.2113130408. Google Scholar

[26]

D. Selaru and V. Mioc, Le probleme de Gyldén du point de vue de la théorie KAM,, C. R. Acad. Sci. Paris, 325 (1997), 487. Google Scholar

[27]

D. Selaru, V. Mioc and C. Cucu-Dumitrescu, The periodic Gyldén-type problem in Astrophysics,, AIP Conf. Proc., 895 (2007), 163. Google Scholar

[28]

C. Siegel and J. Moser, Lectures on Celestial Mechanics,, Springer-Verlag, (1971). Google Scholar

[29]

S. Solimini, On forced dynamical systems with a singularity of repulsive type,, Nonlinear Anal., 14 (1990), 489. doi: 10.1016/0362-546X(90)90037-H. Google Scholar

[30]

P. J. Torres, Twist solutions of a Hill's equations with singular term,, Adv. Nonlinear Stud., 2 (2002), 279. Google Scholar

[31]

P. J. Torres, Existence of one-signed periodic solutions of some second-order differential equations via a Krasnoselskii fixed point theorem,, J. Differential Equations, 190 (2003), 643. doi: 10.1016/S0022-0396(02)00152-3. Google Scholar

[32]

P. J. Torres, Weak singularities may help periodic solutions to exist,, J. Differential Equations, 232 (2007), 277. doi: 10.1016/j.jde.2006.08.006. Google Scholar

[33]

P. J. Torres, Existence and stability of periodic solutions for second order semilinear differential equations with a singular nonlinearity,, Proc. Royal Soc. Edinburgh Sect. A., 137 (2007), 195. doi: 10.1017/S0308210505000739. Google Scholar

[34]

P. J. Torres and M. Zhang, A monotone iterative scheme for a nonlinear second order equation based on a generalized anti-maximum principle,, Math. Nachr., 251 (2003), 101. doi: 10.1002/mana.200310033. Google Scholar

[35]

P. J. Torres and M. Zhang, Twist periodic solutions of repulsive singular equations,, Nonlinear Anal., 56 (2004), 591. doi: 10.1016/j.na.2003.10.005. Google Scholar

[36]

F. Verhulst, Nonlinear Differential Equations and Dynamical Systems,, Universitext, (1996). doi: 10.1007/978-3-642-61453-8. Google Scholar

[37]

P. Yan and M. Zhang, Higher order nonresonance for differential equations with singularities,, Math. Methods Appl. Sci., 26 (2003), 1067. doi: 10.1002/mma.413. Google Scholar

[38]

M. Zhang, The best bound on the rotations in the stability of periodic solutions of a Newtonian equation,, J. London Math. Soc., 67 (2003), 137. doi: 10.1112/S0024610702003939. Google Scholar

[39]

M. Zhang, Periodic solutions of equations of Ermakov-Pinney type,, Adv. Nonlinear Stud., 6 (2006), 57. Google Scholar

[1]

Daniel Núñez, Pedro J. Torres. Periodic solutions of twist type of an earth satellite equation. Discrete & Continuous Dynamical Systems - A, 2001, 7 (2) : 303-306. doi: 10.3934/dcds.2001.7.303

[2]

Hongbin Chen, Yi Li. Existence, uniqueness, and stability of periodic solutions of an equation of duffing type. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 793-807. doi: 10.3934/dcds.2007.18.793

[3]

M.I. Gil’. Existence and stability of periodic solutions of semilinear neutral type systems. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 809-820. doi: 10.3934/dcds.2001.7.809

[4]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[5]

John Erik Fornæss. Periodic points of holomorphic twist maps. Discrete & Continuous Dynamical Systems - A, 2005, 13 (4) : 1047-1056. doi: 10.3934/dcds.2005.13.1047

[6]

Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

[7]

Chia-Yu Hsieh. Stability of radial solutions of the Poisson-Nernst-Planck system in annular domains. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2657-2681. doi: 10.3934/dcdsb.2018269

[8]

Shoichi Hasegawa. Stability and separation property of radial solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (7) : 4127-4136. doi: 10.3934/dcds.2019166

[9]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

[10]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many radial solutions of a non--homogeneous $p$--Laplacian problem. Conference Publications, 2013, 2013 (special) : 51-59. doi: 10.3934/proc.2013.2013.51

[11]

M. Grossi. Existence of radial solutions for an elliptic problem involving exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 221-232. doi: 10.3934/dcds.2008.21.221

[12]

Salvador Addas-Zanata. Stability for the vertical rotation interval of twist mappings. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 631-642. doi: 10.3934/dcds.2006.14.631

[13]

Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319

[14]

Shuangjie Peng, Jing Zhou. Concentration of solutions for a Paneitz type problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1055-1072. doi: 10.3934/dcds.2010.26.1055

[15]

Jifeng Chu, Meirong Zhang. Rotation numbers and Lyapunov stability of elliptic periodic solutions. Discrete & Continuous Dynamical Systems - A, 2008, 21 (4) : 1071-1094. doi: 10.3934/dcds.2008.21.1071

[16]

Rafael Ortega. Stability and index of periodic solutions of a nonlinear telegraph equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 823-837. doi: 10.3934/cpaa.2005.4.823

[17]

Jifeng Chu, Zaitao Liang, Fangfang Liao, Shiping Lu. Existence and stability of periodic solutions for relativistic singular equations. Communications on Pure & Applied Analysis, 2017, 16 (2) : 591-609. doi: 10.3934/cpaa.2017029

[18]

Anatoli F. Ivanov, Sergei Trofimchuk. Periodic solutions and their stability of a differential-difference equation. Conference Publications, 2009, 2009 (Special) : 385-393. doi: 10.3934/proc.2009.2009.385

[19]

Maria Carvalho, Alexander Lohse, Alexandre A. P. Rodrigues. Moduli of stability for heteroclinic cycles of periodic solutions. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6541-6564. doi: 10.3934/dcds.2019284

[20]

Yuxia Guo, Jianjun Nie. Infinitely many non-radial solutions for the prescribed curvature problem of fractional operator. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 6873-6898. doi: 10.3934/dcds.2016099

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (5)

Other articles
by authors

[Back to Top]