• Previous Article
    Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces
  • DCDS Home
  • This Issue
  • Next Article
    Radial stability of periodic solutions of the Gylden-Meshcherskii-type problem
May  2015, 35(5): 1905-1920. doi: 10.3934/dcds.2015.35.1905

$L^q$-Extensions of $L^p$-spaces by fractional diffusion equations

1. 

Department of Mathematics and Department of Computer Science, Georgetown University, Washington D.C. 20057

2. 

Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada

Received  May 2014 Revised  September 2014 Published  December 2014

Based on the geometric-measure-theoretic analysis of a new $L^p$-type capacity defined in the upper-half Euclidean space, this note characterizes a nonnegative Randon measure $\mu$ on $\mathbb R^{1+n}_+$ such that the extension $R_\alpha L^p(\mathbb R^n)\subseteq L^q(\mathbb R^{1+n}_+,\mu)$ holds for $(\alpha,p,q)\in (0,1)\times(1,\infty)\times(1,\infty)$ where $u=R_\alpha f$ is the weak solution of the fractional diffusion equation $(\partial_t + (-\Delta_x)^\alpha)u(t, x) = 0$ in $\mathbb R^{1+n}_+$ subject to $u(0,x)=f(x)$ in $\mathbb R^n$.
Citation: Der-Chen Chang, Jie Xiao. $L^q$-Extensions of $L^p$-spaces by fractional diffusion equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1905-1920. doi: 10.3934/dcds.2015.35.1905
References:
[1]

D. R. Adams, On the existence of capacitary strong type estimates in $\mathbf R^n$,, Ark. Mat., 14 (1976), 125. doi: 10.1007/BF02385830. Google Scholar

[2]

D. R. Adams, Capacity and blow-up for the $3+1$ dimensional wave opartor,, Forum Math. 20 (2008), 20 (2008), 341. doi: 10.1515/FORUM.2008.017. Google Scholar

[3]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, A Series of Comprehensive Studies in Mathematics, (1996). doi: 10.1007/978-3-662-03282-4. Google Scholar

[4]

D. R. Adams and J. Xiao, Strong type estimates for homogeneous Besov capacities,, Math. Ann. 325 (2003), 325 (2003), 695. doi: 10.1007/s00208-002-0396-3. Google Scholar

[5]

J. Bisquert, Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination,, Physical Review E, 72 (2005). doi: 10.1103/PhysRevE.72.011109. Google Scholar

[6]

R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes,, Trans. Amer. Math. Soc., 95 (1960), 263. doi: 10.1090/S0002-9947-1960-0119247-6. Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Diff. Equ., 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[8]

L. Caffarelli and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425. doi: 10.1007/s00222-007-0086-6. Google Scholar

[9]

D. Chamorro, Remarks on a Fractional Diffusion Transport Equation with Applications to the Dissipative Quasi-Geostrophic Equation,, hal-00505027, (2011). Google Scholar

[10]

J. Chen, Q. Deng, Y. Ding and D. Fan, Estimates on fractional power dissipatve equations in function spaces,, Nonlinear Anal., 75 (2012), 2959. doi: 10.1016/j.na.2011.11.039. Google Scholar

[11]

Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes,, Math. Ann., 312 (1998), 465. doi: 10.1007/s002080050232. Google Scholar

[12]

P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations,, SIAM J. Math. Anal., 30 (1999), 937. doi: 10.1137/S0036141098337333. Google Scholar

[13]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Commmun. Math. Phys., 249 (2004), 511. doi: 10.1007/s00220-004-1055-1. Google Scholar

[14]

E. B. Fabes, B. F. Jones and N. M. Riviere, The initial value problem for the Navier-Stokes equations,, Arch. Rational Mech. Anal., 45 (1972), 222. doi: 10.1007/BF00281533. Google Scholar

[15]

H. Federer, Geometric Measure Theory,, Springer-Verlag, (1969). Google Scholar

[16]

R. Jiang, J. Xiao, D. Yang and Z. Zhai, Regularity and capacity for the fractional dissipative operator,, , (). Google Scholar

[17]

D. Li, On a frequency localized Bernstein inequality and some generalized Poincare-type inequalities,, Math. Res. Lett., 20 (2013), 933. doi: 10.4310/MRL.2013.v20.n5.a9. Google Scholar

[18]

V. G. Maz'ya and Yu. V. Netrusov, Some counterexamples for the theory of Sobolev spaces on bad domains,, Potential Anal., 4 (1995), 47. doi: 10.1007/BF01048966. Google Scholar

[19]

C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations,, Nonlinear Anal., 68 (2008), 461. doi: 10.1016/j.na.2006.11.011. Google Scholar

[20]

M. Nishio, K. Shimomura and N. Suzuki, $\alpha$-parabolic Bergman spaces,, Osaka J. Math., 42 (2005), 133. Google Scholar

[21]

M. Nishio, N. Suzuki and M. Yamada, Toeplitz operators and Carleson type measures on parabolic Bergman spaces,, Hokkaido Math. J., 36 (2007), 563. doi: 10.14492/hokmj/1277472867. Google Scholar

[22]

M. Nishio, N. Suzuki and M. Yamada, Compact Toeplitz operators on parabolic Bergman spaces,, Hiroshima Math. J., 38 (2008), 177. Google Scholar

[23]

M. Nishio, N. Suzuki and M. Yamada, Carleson inequalities on parabolic Bergman spaces,, Tohoku Math. J., 62 (2010), 269. doi: 10.2748/tmj/1277298649. Google Scholar

[24]

M. Nishio and M. Yamada, Carleson type measures on parabolic Bergman spaces,, J. Math. Soc. Japan, 58 (2006), 83. doi: 10.2969/jmsj/1145287094. Google Scholar

[25]

L. Vázquez, J. J. Trujillo and M. P. Velasco, Fractional heat equation and the second law of thermodynamics,, Frac. Calc. Appl. Anal., 14 (2011), 334. doi: 10.2478/s13540-011-0021-9. Google Scholar

[26]

G. Wu and J. Yuan, Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces,, J. Math. Anal. Appl., 340 (2008), 1326. doi: 10.1016/j.jmaa.2007.09.060. Google Scholar

[27]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data,, Electron. J. Differential Equations, 2001 (2001), 1. Google Scholar

[28]

J. Wu, Lower Bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Commun. Math. Phys., 263 (2006), 803. doi: 10.1007/s00220-005-1483-6. Google Scholar

[29]

J. Xiao, Carleson embeddings for Sobolev spaces via heat equation,, J. Diff. Equ., 224 (2006), 277. doi: 10.1016/j.jde.2005.07.014. Google Scholar

[30]

J. Xiao, Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation,, Adv. Math., 207 (2006), 828. doi: 10.1016/j.aim.2006.01.010. Google Scholar

[31]

L. Xie and X. Zhang, Heat kernel estimates for critical fractional diffusion operator,, , (). Google Scholar

[32]

Z. Zhai, Strichartz type estimates for fractional heat equations,, J. Math. Anal. Appl., 356 (2009), 642. doi: 10.1016/j.jmaa.2009.03.051. Google Scholar

[33]

Z. Zhai, Carleson measure problems for parabolic Bergman spaces and homogeneous Sobolev spaces,, Nonlinear Anal., 73 (2010), 2611. doi: 10.1016/j.na.2010.06.040. Google Scholar

show all references

References:
[1]

D. R. Adams, On the existence of capacitary strong type estimates in $\mathbf R^n$,, Ark. Mat., 14 (1976), 125. doi: 10.1007/BF02385830. Google Scholar

[2]

D. R. Adams, Capacity and blow-up for the $3+1$ dimensional wave opartor,, Forum Math. 20 (2008), 20 (2008), 341. doi: 10.1515/FORUM.2008.017. Google Scholar

[3]

D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory,, A Series of Comprehensive Studies in Mathematics, (1996). doi: 10.1007/978-3-662-03282-4. Google Scholar

[4]

D. R. Adams and J. Xiao, Strong type estimates for homogeneous Besov capacities,, Math. Ann. 325 (2003), 325 (2003), 695. doi: 10.1007/s00208-002-0396-3. Google Scholar

[5]

J. Bisquert, Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination,, Physical Review E, 72 (2005). doi: 10.1103/PhysRevE.72.011109. Google Scholar

[6]

R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes,, Trans. Amer. Math. Soc., 95 (1960), 263. doi: 10.1090/S0002-9947-1960-0119247-6. Google Scholar

[7]

L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian,, Comm. Partial Diff. Equ., 32 (2007), 1245. doi: 10.1080/03605300600987306. Google Scholar

[8]

L. Caffarelli and L. Silvestre, Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian,, Invent. Math., 171 (2008), 425. doi: 10.1007/s00222-007-0086-6. Google Scholar

[9]

D. Chamorro, Remarks on a Fractional Diffusion Transport Equation with Applications to the Dissipative Quasi-Geostrophic Equation,, hal-00505027, (2011). Google Scholar

[10]

J. Chen, Q. Deng, Y. Ding and D. Fan, Estimates on fractional power dissipatve equations in function spaces,, Nonlinear Anal., 75 (2012), 2959. doi: 10.1016/j.na.2011.11.039. Google Scholar

[11]

Z.-Q. Chen and R. Song, Estimates on Green functions and Poisson kernels for symmetric stable processes,, Math. Ann., 312 (1998), 465. doi: 10.1007/s002080050232. Google Scholar

[12]

P. Constantin and J. Wu, Behavior of solutions of 2D quasi-geostrophic equations,, SIAM J. Math. Anal., 30 (1999), 937. doi: 10.1137/S0036141098337333. Google Scholar

[13]

A. Córdoba and D. Córdoba, A maximum principle applied to quasi-geostrophic equations,, Commmun. Math. Phys., 249 (2004), 511. doi: 10.1007/s00220-004-1055-1. Google Scholar

[14]

E. B. Fabes, B. F. Jones and N. M. Riviere, The initial value problem for the Navier-Stokes equations,, Arch. Rational Mech. Anal., 45 (1972), 222. doi: 10.1007/BF00281533. Google Scholar

[15]

H. Federer, Geometric Measure Theory,, Springer-Verlag, (1969). Google Scholar

[16]

R. Jiang, J. Xiao, D. Yang and Z. Zhai, Regularity and capacity for the fractional dissipative operator,, , (). Google Scholar

[17]

D. Li, On a frequency localized Bernstein inequality and some generalized Poincare-type inequalities,, Math. Res. Lett., 20 (2013), 933. doi: 10.4310/MRL.2013.v20.n5.a9. Google Scholar

[18]

V. G. Maz'ya and Yu. V. Netrusov, Some counterexamples for the theory of Sobolev spaces on bad domains,, Potential Anal., 4 (1995), 47. doi: 10.1007/BF01048966. Google Scholar

[19]

C. Miao, B. Yuan and B. Zhang, Well-posedness of the Cauchy problem for the fractional power dissipative equations,, Nonlinear Anal., 68 (2008), 461. doi: 10.1016/j.na.2006.11.011. Google Scholar

[20]

M. Nishio, K. Shimomura and N. Suzuki, $\alpha$-parabolic Bergman spaces,, Osaka J. Math., 42 (2005), 133. Google Scholar

[21]

M. Nishio, N. Suzuki and M. Yamada, Toeplitz operators and Carleson type measures on parabolic Bergman spaces,, Hokkaido Math. J., 36 (2007), 563. doi: 10.14492/hokmj/1277472867. Google Scholar

[22]

M. Nishio, N. Suzuki and M. Yamada, Compact Toeplitz operators on parabolic Bergman spaces,, Hiroshima Math. J., 38 (2008), 177. Google Scholar

[23]

M. Nishio, N. Suzuki and M. Yamada, Carleson inequalities on parabolic Bergman spaces,, Tohoku Math. J., 62 (2010), 269. doi: 10.2748/tmj/1277298649. Google Scholar

[24]

M. Nishio and M. Yamada, Carleson type measures on parabolic Bergman spaces,, J. Math. Soc. Japan, 58 (2006), 83. doi: 10.2969/jmsj/1145287094. Google Scholar

[25]

L. Vázquez, J. J. Trujillo and M. P. Velasco, Fractional heat equation and the second law of thermodynamics,, Frac. Calc. Appl. Anal., 14 (2011), 334. doi: 10.2478/s13540-011-0021-9. Google Scholar

[26]

G. Wu and J. Yuan, Well-posedness of the Cauchy problem for the fractional power dissipative equation in critical Besov spaces,, J. Math. Anal. Appl., 340 (2008), 1326. doi: 10.1016/j.jmaa.2007.09.060. Google Scholar

[27]

J. Wu, Dissipative quasi-geostrophic equations with $L^p$ data,, Electron. J. Differential Equations, 2001 (2001), 1. Google Scholar

[28]

J. Wu, Lower Bounds for an integral involving fractional Laplacians and the generalized Navier-Stokes equations in Besov spaces,, Commun. Math. Phys., 263 (2006), 803. doi: 10.1007/s00220-005-1483-6. Google Scholar

[29]

J. Xiao, Carleson embeddings for Sobolev spaces via heat equation,, J. Diff. Equ., 224 (2006), 277. doi: 10.1016/j.jde.2005.07.014. Google Scholar

[30]

J. Xiao, Homogeneous endpoint Besov space embeddings by Hausdorff capacity and heat equation,, Adv. Math., 207 (2006), 828. doi: 10.1016/j.aim.2006.01.010. Google Scholar

[31]

L. Xie and X. Zhang, Heat kernel estimates for critical fractional diffusion operator,, , (). Google Scholar

[32]

Z. Zhai, Strichartz type estimates for fractional heat equations,, J. Math. Anal. Appl., 356 (2009), 642. doi: 10.1016/j.jmaa.2009.03.051. Google Scholar

[33]

Z. Zhai, Carleson measure problems for parabolic Bergman spaces and homogeneous Sobolev spaces,, Nonlinear Anal., 73 (2010), 2611. doi: 10.1016/j.na.2010.06.040. Google Scholar

[1]

Samer Dweik. $ L^{p, q} $ estimates on the transport density. Communications on Pure & Applied Analysis, 2019, 18 (6) : 3001-3009. doi: 10.3934/cpaa.2019134

[2]

Damiano Foschi. Some remarks on the $L^p-L^q$ boundedness of trigonometric sums and oscillatory integrals. Communications on Pure & Applied Analysis, 2005, 4 (3) : 569-588. doi: 10.3934/cpaa.2005.4.569

[3]

Karen Yagdjian, Anahit Galstian. Fundamental solutions for wave equation in Robertson-Walker model of universe and $L^p-L^q$ -decay estimates. Discrete & Continuous Dynamical Systems - S, 2009, 2 (3) : 483-502. doi: 10.3934/dcdss.2009.2.483

[4]

Masahiro Ikeda, Takahisa Inui, Mamoru Okamoto, Yuta Wakasugi. $ L^p $-$ L^q $ estimates for the damped wave equation and the critical exponent for the nonlinear problem with slowly decaying data. Communications on Pure & Applied Analysis, 2019, 18 (4) : 1967-2008. doi: 10.3934/cpaa.2019090

[5]

Markus Riedle, Jianliang Zhai. Large deviations for stochastic heat equations with memory driven by Lévy-type noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (4) : 1983-2005. doi: 10.3934/dcds.2018080

[6]

Ming Wang, Yanbin Tang. Attractors in $H^2$ and $L^{2p-2}$ for reaction diffusion equations on unbounded domains. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1111-1121. doi: 10.3934/cpaa.2013.12.1111

[7]

Tadeusz Iwaniec, Gaven Martin, Carlo Sbordone. $L^p$-integrability & weak type $L^{2}$-estimates for the gradient of harmonic mappings of $\mathbb D$. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 145-152. doi: 10.3934/dcdsb.2009.11.145

[8]

L. Cherfils, Y. Il'yasov. On the stationary solutions of generalized reaction diffusion equations with $p\& q$-Laplacian. Communications on Pure & Applied Analysis, 2005, 4 (1) : 9-22. doi: 10.3934/cpaa.2005.4.9

[9]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the heat equation with concave-convex nonlinearity and initial data in weak-$L^p$ spaces. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1715-1732. doi: 10.3934/cpaa.2011.10.1715

[10]

Lucas C. F. Ferreira, Elder J. Villamizar-Roa. On the stability problem for the Boussinesq equations in weak-$L^p$ spaces. Communications on Pure & Applied Analysis, 2010, 9 (3) : 667-684. doi: 10.3934/cpaa.2010.9.667

[11]

Chérif Amrouche, Nour El Houda Seloula. $L^p$-theory for the Navier-Stokes equations with pressure boundary conditions. Discrete & Continuous Dynamical Systems - S, 2013, 6 (5) : 1113-1137. doi: 10.3934/dcdss.2013.6.1113

[12]

Angelo Favini, Alfredo Lorenzi, Hiroki Tanabe, Atsushi Yagi. An $L^p$-approach to singular linear parabolic equations with lower order terms. Discrete & Continuous Dynamical Systems - A, 2008, 22 (4) : 989-1008. doi: 10.3934/dcds.2008.22.989

[13]

Fabio Cipriani, Gabriele Grillo. On the $l^p$ -agmon's theory. Conference Publications, 1998, 1998 (Special) : 167-176. doi: 10.3934/proc.1998.1998.167

[14]

Patrizia Pucci, Mingqi Xiang, Binlin Zhang. A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4035-4051. doi: 10.3934/dcds.2017171

[15]

Yong Xia, Yu-Jun Gong, Sheng-Nan Han. A new semidefinite relaxation for $L_{1}$-constrained quadratic optimization and extensions. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 185-195. doi: 10.3934/naco.2015.5.185

[16]

C. García Vázquez, Francisco Ortegón Gallego. On certain nonlinear parabolic equations with singular diffusion and data in $L^1$. Communications on Pure & Applied Analysis, 2005, 4 (3) : 589-612. doi: 10.3934/cpaa.2005.4.589

[17]

Leszek Gasiński, Nikolaos S. Papageorgiou. Dirichlet $(p,q)$-equations at resonance. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2037-2060. doi: 10.3934/dcds.2014.34.2037

[18]

Alexandre N. Carvalho, Jan W. Cholewa. Strongly damped wave equations in $W^(1,p)_0 (\Omega) \times L^p(\Omega)$. Conference Publications, 2007, 2007 (Special) : 230-239. doi: 10.3934/proc.2007.2007.230

[19]

Qunyi Bie, Haibo Cui, Qiru Wang, Zheng-An Yao. Incompressible limit for the compressible flow of liquid crystals in $ L^p$ type critical Besov spaces. Discrete & Continuous Dynamical Systems - A, 2018, 38 (6) : 2879-2910. doi: 10.3934/dcds.2018124

[20]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems - A, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (15)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]