• Previous Article
    A variational approach to reaction-diffusion equations with forced speed in dimension 1
  • DCDS Home
  • This Issue
  • Next Article
    Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces
May  2015, 35(5): 1873-1890. doi: 10.3934/dcds.2015.35.1873

Stability of singular limit cycles for Abel equations

1. 

Departamento de Matemáticas, Universidad de Extremadura, Badajoz 06006, Spain, Spain

2. 

Dept. de Matemàtiques, Universitat Autònoma de Barcelona, Edifici C, 08193 Bellaterra, Barcelona

Received  March 2014 Revised  September 2014 Published  December 2014

We obtain a criterion for determining the stability of singular limit cycles of Abel equations $x'=A(t)x^3+B(t)x^2$. This stability controls the possible saddle-node bifurcations of limit cycles. Therefore, studying the Hopf-like bifurcations at $x=0$, together with the bifurcations at infinity of a suitable compactification of the equations, we obtain upper bounds of their number of limit cycles. As an illustration of this approach, we prove that the family $x'=a t(t-t_A)x^3+b (t-t_B)x^2$, with $a ,b>0$, has at most two positive limit cycles for any $t_B,t_A$.
Citation: José Luis Bravo, Manuel Fernández, Armengol Gasull. Stability of singular limit cycles for Abel equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 1873-1890. doi: 10.3934/dcds.2015.35.1873
References:
[1]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161. doi: 10.1016/j.jde.2006.11.004. Google Scholar

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 105 (1987), 129. doi: 10.1017/S0308210500021971. Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems,, Halsted Press (A division of John Wiley & Sons), (1973). Google Scholar

[4]

D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202. Google Scholar

[5]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869. doi: 10.1142/S0218127409025195. Google Scholar

[6]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931. doi: 10.1016/j.jmaa.2007.12.060. Google Scholar

[7]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system,, Diff. Eq., 12 (1976), 944. Google Scholar

[8]

G. F. D. Duff, Limit-cycles and rotated vector fields,, Ann. of Math., 57 (1953), 15. doi: 10.2307/1969724. Google Scholar

[9]

E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations,, Phys. D, 237 (2008), 3159. doi: 10.1016/j.physd.2008.05.011. Google Scholar

[10]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737. doi: 10.1142/S0218127406017130. Google Scholar

[11]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235. doi: 10.1137/0521068. Google Scholar

[12]

T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation,, Comput. Math. Appl., 46 (2003), 849. doi: 10.1016/S0898-1221(03)90147-7. Google Scholar

[13]

E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen,, Neunte Auflage, (1977). Google Scholar

[14]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt}=\sum_{j=0}^n a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$,, Inv. Math., 59 (1980), 67. doi: 10.1007/BF01390315. Google Scholar

[15]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277. doi: 10.1112/jlms/s2-20.2.277. Google Scholar

[16]

J. M. Olm and X. Ros-Oton, Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations,, Discrete Contin. Dyn. Syst., 33 (2013), 1603. doi: 10.3934/dcds.2013.33.1603. Google Scholar

[17]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582. doi: 10.1016/j.jmaa.2011.02.084. Google Scholar

[18]

D. E. Panayotounakos and T. I. Zarmpoutis, Construction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations),, Int. J. Math. Math. Sci., 2011 (2011). doi: 10.1155/2011/387429. Google Scholar

[19]

A. A. Panov, The number of periodic solutions of polynomial differential equations,, Math. Notes, 64 (1998), 622. doi: 10.1007/BF02316287. Google Scholar

[20]

L. M. Perko, Differential Equations and Dynamical Systems,, Third edition, (2001). doi: 10.1007/978-1-4613-0003-8. Google Scholar

[21]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations,, Academic Press, (1966). Google Scholar

[22]

J. Sotomayor, Curvas Definidas Por Equações Diferenciais no Plano,, IMPA, (1981). Google Scholar

show all references

References:
[1]

M. J. Álvarez, A. Gasull and H. Giacomini, A new uniqueness criterion for the number of periodic orbits of Abel equations,, J. Differential Equations, 234 (2007), 161. doi: 10.1016/j.jde.2006.11.004. Google Scholar

[2]

M. A. M. Alwash and N. G. Lloyd, Nonautonomous equations related to polynomial two dimensional systems,, Proc. Roy. Soc. Edinburgh Sect. A 105 (1987), 105 (1987), 129. doi: 10.1017/S0308210500021971. Google Scholar

[3]

A. A. Andronov, E. A. Leontovich, I. I. Gordon and A. G. Maier, Qualitative Theory of Second-Order Dynamic Systems,, Halsted Press (A division of John Wiley & Sons), (1973). Google Scholar

[4]

D. M. Benardete, V. W. Noonburg and B. Pollina, Qualitative tools for studying periodic solutions and bifurcations as applied to the periodically harvested logistic equation,, Amer. Math. Monthly, 115 (2008), 202. Google Scholar

[5]

J. L. Bravo, M. Fernández and A. Gasull, Limit cycles for some Abel equations having coefficients without fixed signs,, Int. J. Bif. Chaos, 19 (2009), 3869. doi: 10.1142/S0218127409025195. Google Scholar

[6]

J. L. Bravo and J. Torregrosa, Abel-like equations with no periodic solutions,, J. Math. Anal. Appl., 342 (2008), 931. doi: 10.1016/j.jmaa.2007.12.060. Google Scholar

[7]

L. A. Cherkas, Number of limit cycles of an autonomous second-order system,, Diff. Eq., 12 (1976), 944. Google Scholar

[8]

G. F. D. Duff, Limit-cycles and rotated vector fields,, Ann. of Math., 57 (1953), 15. doi: 10.2307/1969724. Google Scholar

[9]

E. Fossas, J. M. Olm and H. Sira-Ramírez, Iterative approximation of limit cycles for a class of Abel equations,, Phys. D, 237 (2008), 3159. doi: 10.1016/j.physd.2008.05.011. Google Scholar

[10]

A. Gasull and A. Guillamon, Limit cycles for generalized Abel equations,, Int. J. Bif. Chaos, 16 (2006), 3737. doi: 10.1142/S0218127406017130. Google Scholar

[11]

A. Gasull and J. Llibre, Limit cycles for a class of Abel equations,, SIAM J. Math. Anal., 21 (1990), 1235. doi: 10.1137/0521068. Google Scholar

[12]

T. Harko and M. K. Mak, Relativistic dissipative cosmological models and Abel differential equation,, Comput. Math. Appl., 46 (2003), 849. doi: 10.1016/S0898-1221(03)90147-7. Google Scholar

[13]

E. Kamke, Differentialgleichungen, Lösungsmethoden und Lösungen. I: Gewöhnliche Differentialgleichungen,, Neunte Auflage, (1977). Google Scholar

[14]

A. Lins Neto, On the number of solutions of the equation $\frac{d x}{dt}=\sum_{j=0}^n a_j(t)x^j$, $0\leq t\leq 1$, for which $x(0)=x(1)$,, Inv. Math., 59 (1980), 67. doi: 10.1007/BF01390315. Google Scholar

[15]

N. G. Lloyd, A note on the number of limit cycles in certain two-dimensional systems,, J. London Math. Soc., 20 (1979), 277. doi: 10.1112/jlms/s2-20.2.277. Google Scholar

[16]

J. M. Olm and X. Ros-Oton, Existence of periodic solutions with nonconstant sign in a class of generalized Abel equations,, Discrete Contin. Dyn. Syst., 33 (2013), 1603. doi: 10.3934/dcds.2013.33.1603. Google Scholar

[17]

J. M. Olm, X. Ros-Oton and T. M. Seara, Periodic solutions with non-constant sign in Abel equations of the second kind,, J. Math. Anal. Appl., 381 (2011), 582. doi: 10.1016/j.jmaa.2011.02.084. Google Scholar

[18]

D. E. Panayotounakos and T. I. Zarmpoutis, Construction of Exact Parametric or Closed Form Solutions of Some Unsolvable Classes of Nonlinear ODEs (Abel's Nonlinear ODEs of the First Kind and Relative Degenerate Equations),, Int. J. Math. Math. Sci., 2011 (2011). doi: 10.1155/2011/387429. Google Scholar

[19]

A. A. Panov, The number of periodic solutions of polynomial differential equations,, Math. Notes, 64 (1998), 622. doi: 10.1007/BF02316287. Google Scholar

[20]

L. M. Perko, Differential Equations and Dynamical Systems,, Third edition, (2001). doi: 10.1007/978-1-4613-0003-8. Google Scholar

[21]

V. A. Pliss, Non-Local Problems of the Theory of Oscillations,, Academic Press, (1966). Google Scholar

[22]

J. Sotomayor, Curvas Definidas Por Equações Diferenciais no Plano,, IMPA, (1981). Google Scholar

[1]

T. Diogo, P. Lima, M. Rebelo. Numerical solution of a nonlinear Abel type Volterra integral equation. Communications on Pure & Applied Analysis, 2006, 5 (2) : 277-288. doi: 10.3934/cpaa.2006.5.277

[2]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[3]

Yu-Hsien Chang, Guo-Chin Jau. The behavior of the solution for a mathematical model for analysis of the cell cycle. Communications on Pure & Applied Analysis, 2006, 5 (4) : 779-792. doi: 10.3934/cpaa.2006.5.779

[4]

Amelia Álvarez, José-Luis Bravo, Manuel Fernández. The number of limit cycles for generalized Abel equations with periodic coefficients of definite sign. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1493-1501. doi: 10.3934/cpaa.2009.8.1493

[5]

Jacinto Marabel Romo. A closed-form solution for outperformance options with stochastic correlation and stochastic volatility. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1185-1209. doi: 10.3934/jimo.2015.11.1185

[6]

Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multi-dimensional derivative complex Ginzburg-Landau equation. Kinetic & Related Models, 2014, 7 (1) : 57-77. doi: 10.3934/krm.2014.7.57

[7]

Út V. Lê. Regularity of the solution of a nonlinear wave equation. Communications on Pure & Applied Analysis, 2010, 9 (4) : 1099-1115. doi: 10.3934/cpaa.2010.9.1099

[8]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solution of the Novikov equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (6) : 2865-2899. doi: 10.3934/dcdsb.2018290

[9]

Changchun Liu, Hui Tang. Existence of periodic solution for a Cahn-Hilliard/Allen-Cahn equation in two space dimensions. Evolution Equations & Control Theory, 2017, 6 (2) : 219-237. doi: 10.3934/eect.2017012

[10]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[11]

Benjamin B. Kennedy. A periodic solution with non-simple oscillation for an equation with state-dependent delay and strictly monotonic negative feedback. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 47-66. doi: 10.3934/dcdss.2020003

[12]

Brian D. O. Anderson, Shaoshuai Mou, A. Stephen Morse, Uwe Helmke. Decentralized gradient algorithm for solution of a linear equation. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 319-328. doi: 10.3934/naco.2016014

[13]

Shaoyong Lai, Yong Hong Wu. The asymptotic solution of the Cauchy problem for a generalized Boussinesq equation. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 401-408. doi: 10.3934/dcdsb.2003.3.401

[14]

Tianliang Yang, J. M. McDonough. Solution filtering technique for solving Burgers' equation. Conference Publications, 2003, 2003 (Special) : 951-959. doi: 10.3934/proc.2003.2003.951

[15]

Dominika Pilarczyk. Asymptotic stability of singular solution to nonlinear heat equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (3) : 991-1001. doi: 10.3934/dcds.2009.25.991

[16]

Ellen Baake, Michael Baake, Majid Salamat. The general recombination equation in continuous time and its solution. Discrete & Continuous Dynamical Systems - A, 2016, 36 (1) : 63-95. doi: 10.3934/dcds.2016.36.63

[17]

Tran Ngoc Thach, Nguyen Huy Tuan, Donal O'Regan. Regularized solution for a biharmonic equation with discrete data. Evolution Equations & Control Theory, 2019, 0 (0) : 1-18. doi: 10.3934/eect.2020008

[18]

Qiongwei Huang, Jiashi Tang. Bifurcation of a limit cycle in the ac-driven complex Ginzburg-Landau equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 129-141. doi: 10.3934/dcdsb.2010.14.129

[19]

Claudianor O. Alves. Existence of periodic solution for a class of systems involving nonlinear wave equations. Communications on Pure & Applied Analysis, 2005, 4 (3) : 487-498. doi: 10.3934/cpaa.2005.4.487

[20]

Jingli Ren, Zhibo Cheng, Stefan Siegmund. Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 385-392. doi: 10.3934/dcdsb.2011.16.385

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (1)

[Back to Top]