• Previous Article
    On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications
  • DCDS Home
  • This Issue
  • Next Article
    Spreading speeds and traveling waves of nonlocal monostable equations in time and space periodic habitats
April  2015, 35(4): 1641-1663. doi: 10.3934/dcds.2015.35.1641

Avoidance behavior in intraguild predation communities: A cross-diffusion model

1. 

National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN 37996, United States

2. 

Department of Mathematics, University of Miami, Coral Gables, FL 33146, United States

Received  July 2013 Revised  August 2014 Published  November 2014

A cross-diffusion model of an intraguild predation community in a two-dimensional bounded domain where the intraguild prey employs a fitness based avoidance strategy is examined. The avoidance strategy employed is to increase motility in response to negative local fitness. Global existence of trajectories and the existence of a compact global attractor is proved. It is shown that if the intraguild prey has positive fitness at any point in the habitat when trying to invade, then it will be uniformly persistent in the system if its avoidance tendency is sufficiently strong. This type of movement strategy can lead to coexistence states where the intraguild prey is marginalized to areas with low resource productivity while the intraguild predator maintains high densities in regions with abundant resources, a pattern observed in many real world intraguild predation systems. Additionally, the effects of fitness based avoidance on eigenvalues in more general systems are discussed.
Citation: Daniel Ryan, Robert Stephen Cantrell. Avoidance behavior in intraguild predation communities: A cross-diffusion model. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1641-1663. doi: 10.3934/dcds.2015.35.1641
References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic equaitons I: Abstract evolution equaitons,, Nonlinear Analysis: Theory, 12 (1988), 895. doi: 10.1016/0362-546X(88)90073-9. Google Scholar

[2]

H. Amann, Dynamic theory of quasilinear parabolic systems III: Global existence,, Mathematische Zeitschrift, 202 (1989), 219. doi: 10.1007/BF01215256. Google Scholar

[3]

H. Amann, Dynamic theory of quasilinear parabolic systems II: reaction-diffusion systems,, Differential and Integral Equations, 3 (1990), 13. Google Scholar

[4]

M. Arim and P. A. Marquet, Intraguild predation: A widespread interaction related to species biology,, Ecology Letters, 7 (2004), 557. doi: 10.1111/j.1461-0248.2004.00613.x. Google Scholar

[5]

P. Amarasekare, Productivity, dispersal and the coexistence of intraguild predators and prey,, Journal of Theoretical Biology, 243 (2006), 121. doi: 10.1016/j.jtbi.2006.06.007. Google Scholar

[6]

P. Amarasekare, Spatial dynamics of communities with intraguild predation: The role of dispersal strategies,, The American Naturalist, 170 (2007), 819. doi: 10.1086/522837. Google Scholar

[7]

J. E. Billotti and J. P. LaSalle, Dissipative periodic processes,, Bulletin of the American Mathematical Society, 77 (1971), 1082. doi: 10.1090/S0002-9904-1971-12879-3. Google Scholar

[8]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, Wiley, (2003). doi: 10.1002/0470871296. Google Scholar

[9]

S. M. Durant, Living with the enemy: Avoidance of hyenas and lions by cheetahs in the Serengeti,, Behavioral Ecology, 11 (2000), 624. doi: 10.1093/beheco/11.6.624. Google Scholar

[10]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM Journal on Mathematical Analysis, 20 (1989), 388. doi: 10.1137/0520025. Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[12]

R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation,, The American Naturalist, 149 (1997), 745. doi: 10.1086/286018. Google Scholar

[13]

T. Kimbrell, R. D. Holt and P. Lundberg, The influence of vigilance on intraguild predation,, Journal of Theoretical Biology, 249 (2007), 218. doi: 10.1016/j.jtbi.2007.07.031. Google Scholar

[14]

D. Le, Cross diffusion systems on n spatial dimensional domains,, Indiana University Mathematics Journal, 51 (2002), 625. doi: 10.1512/iumj.2002.51.2198. Google Scholar

[15]

G. Lieberman, Second Order Parabolic Equations,, World Scientific, (1996). doi: 10.1142/3302. Google Scholar

[16]

E. Lucas, D. Coderre and J. Brodeur, Selection of molting and pupation sites by Coleomegilla maculata (Coleoptera: Coccinellidae): avoidance of intraguild predation,, Environmental Entomology, 29 (2000), 454. doi: 10.1603/0046-225X-29.3.454. Google Scholar

[17]

L. Nirenberg, On elliptic partial differential equations,, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 13 (1959), 115. Google Scholar

[18]

T. Okuyama and R. L. Ruyle, Analysis of adaptive foraging in an intraguild predation system,, Web Ecology, 4 (2003), 1. doi: 10.5194/we-4-1-2003. Google Scholar

[19]

F. Palomares and P. Ferreras, Spatial relationships between Iberian lynx and other carnivores in an area of southwestern Spain,, Journal of Applied Ecology, 33 (1996), 5. Google Scholar

[20]

F. Palomares and T. M. Caro, Interspecific killing among mammalian carnivores,, The American Naturalist, 153 (1999), 492. doi: 10.1086/303189. Google Scholar

[21]

D. Ryan, Fitness Dependent Dispersal in Intraguild Predation Communities,, Ph.D thesis, (2011). Google Scholar

[22]

F. Sergio, L. Marchesi and P. Pedrini, Spatial refugia and the coexistence of a diurnal raptor with its intraguild owl predator,, Journal of Animal Ecology, 72 (2003), 232. doi: 10.1046/j.1365-2656.2003.00693.x. Google Scholar

[23]

F. Sergio, L. Marchesi, P. Pedrini and V. Penteriani, Coexistence of a generalist owl with its intraguild predator: distance-sensitive or habitat-mediated avoidance?,, Animal Behaviour, 74 (2007), 1607. doi: 10.1016/j.anbehav.2006.10.022. Google Scholar

[24]

R. Skeel and M. Berzins, A method for the spatial descretization of parabolic equations in one space variable,, SIAM Journal on Scientific and Statistical Computing, 11 (1990), 1. doi: 10.1137/0911001. Google Scholar

[25]

R. Temam, Infinite Dimensional Dynamical Systems,, Springer-Verlag, (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar

[26]

C. M. Thompson and E. M. Gese, Food webs and intraguild predation: Community interactions of a native mesocarnivore,, Ecology, 88 (2007), 334. Google Scholar

show all references

References:
[1]

H. Amann, Dynamic theory of quasilinear parabolic equaitons I: Abstract evolution equaitons,, Nonlinear Analysis: Theory, 12 (1988), 895. doi: 10.1016/0362-546X(88)90073-9. Google Scholar

[2]

H. Amann, Dynamic theory of quasilinear parabolic systems III: Global existence,, Mathematische Zeitschrift, 202 (1989), 219. doi: 10.1007/BF01215256. Google Scholar

[3]

H. Amann, Dynamic theory of quasilinear parabolic systems II: reaction-diffusion systems,, Differential and Integral Equations, 3 (1990), 13. Google Scholar

[4]

M. Arim and P. A. Marquet, Intraguild predation: A widespread interaction related to species biology,, Ecology Letters, 7 (2004), 557. doi: 10.1111/j.1461-0248.2004.00613.x. Google Scholar

[5]

P. Amarasekare, Productivity, dispersal and the coexistence of intraguild predators and prey,, Journal of Theoretical Biology, 243 (2006), 121. doi: 10.1016/j.jtbi.2006.06.007. Google Scholar

[6]

P. Amarasekare, Spatial dynamics of communities with intraguild predation: The role of dispersal strategies,, The American Naturalist, 170 (2007), 819. doi: 10.1086/522837. Google Scholar

[7]

J. E. Billotti and J. P. LaSalle, Dissipative periodic processes,, Bulletin of the American Mathematical Society, 77 (1971), 1082. doi: 10.1090/S0002-9904-1971-12879-3. Google Scholar

[8]

R. S. Cantrell and C. Cosner, Spatial Ecology via Reaction-Diffusion Equations,, Wiley, (2003). doi: 10.1002/0470871296. Google Scholar

[9]

S. M. Durant, Living with the enemy: Avoidance of hyenas and lions by cheetahs in the Serengeti,, Behavioral Ecology, 11 (2000), 624. doi: 10.1093/beheco/11.6.624. Google Scholar

[10]

J. K. Hale and P. Waltman, Persistence in infinite-dimensional systems,, SIAM Journal on Mathematical Analysis, 20 (1989), 388. doi: 10.1137/0520025. Google Scholar

[11]

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,, Springer-Verlag, (1983). doi: 10.1007/978-3-642-61798-0. Google Scholar

[12]

R. D. Holt and G. A. Polis, A theoretical framework for intraguild predation,, The American Naturalist, 149 (1997), 745. doi: 10.1086/286018. Google Scholar

[13]

T. Kimbrell, R. D. Holt and P. Lundberg, The influence of vigilance on intraguild predation,, Journal of Theoretical Biology, 249 (2007), 218. doi: 10.1016/j.jtbi.2007.07.031. Google Scholar

[14]

D. Le, Cross diffusion systems on n spatial dimensional domains,, Indiana University Mathematics Journal, 51 (2002), 625. doi: 10.1512/iumj.2002.51.2198. Google Scholar

[15]

G. Lieberman, Second Order Parabolic Equations,, World Scientific, (1996). doi: 10.1142/3302. Google Scholar

[16]

E. Lucas, D. Coderre and J. Brodeur, Selection of molting and pupation sites by Coleomegilla maculata (Coleoptera: Coccinellidae): avoidance of intraguild predation,, Environmental Entomology, 29 (2000), 454. doi: 10.1603/0046-225X-29.3.454. Google Scholar

[17]

L. Nirenberg, On elliptic partial differential equations,, Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 13 (1959), 115. Google Scholar

[18]

T. Okuyama and R. L. Ruyle, Analysis of adaptive foraging in an intraguild predation system,, Web Ecology, 4 (2003), 1. doi: 10.5194/we-4-1-2003. Google Scholar

[19]

F. Palomares and P. Ferreras, Spatial relationships between Iberian lynx and other carnivores in an area of southwestern Spain,, Journal of Applied Ecology, 33 (1996), 5. Google Scholar

[20]

F. Palomares and T. M. Caro, Interspecific killing among mammalian carnivores,, The American Naturalist, 153 (1999), 492. doi: 10.1086/303189. Google Scholar

[21]

D. Ryan, Fitness Dependent Dispersal in Intraguild Predation Communities,, Ph.D thesis, (2011). Google Scholar

[22]

F. Sergio, L. Marchesi and P. Pedrini, Spatial refugia and the coexistence of a diurnal raptor with its intraguild owl predator,, Journal of Animal Ecology, 72 (2003), 232. doi: 10.1046/j.1365-2656.2003.00693.x. Google Scholar

[23]

F. Sergio, L. Marchesi, P. Pedrini and V. Penteriani, Coexistence of a generalist owl with its intraguild predator: distance-sensitive or habitat-mediated avoidance?,, Animal Behaviour, 74 (2007), 1607. doi: 10.1016/j.anbehav.2006.10.022. Google Scholar

[24]

R. Skeel and M. Berzins, A method for the spatial descretization of parabolic equations in one space variable,, SIAM Journal on Scientific and Statistical Computing, 11 (1990), 1. doi: 10.1137/0911001. Google Scholar

[25]

R. Temam, Infinite Dimensional Dynamical Systems,, Springer-Verlag, (1997). doi: 10.1007/978-1-4612-0645-3. Google Scholar

[26]

C. M. Thompson and E. M. Gese, Food webs and intraguild predation: Community interactions of a native mesocarnivore,, Ecology, 88 (2007), 334. Google Scholar

[1]

Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145

[2]

Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193

[3]

Yi Li, Chunshan Zhao. Global existence of solutions to a cross-diffusion system in higher dimensional domains. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 185-192. doi: 10.3934/dcds.2005.12.185

[4]

Esther S. Daus, Josipa-Pina Milišić, Nicola Zamponi. Global existence for a two-phase flow model with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019198

[5]

Hua Nie, Sze-Bi Hsu, Feng-Bin Wang. Global dynamics of a reaction-diffusion system with intraguild predation and internal storage. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 0-0. doi: 10.3934/dcdsb.2019194

[6]

Y. S. Choi, Roger Lui, Yoshio Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with strongly coupled cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (3) : 719-730. doi: 10.3934/dcds.2004.10.719

[7]

Y. S. Choi, Roger Lui, Yoshio Yamada. Existence of global solutions for the Shigesada-Kawasaki-Teramoto model with weak cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1193-1200. doi: 10.3934/dcds.2003.9.1193

[8]

Yanxia Wu, Yaping Wu. Existence of traveling waves with transition layers for some degenerate cross-diffusion systems. Communications on Pure & Applied Analysis, 2012, 11 (3) : 911-934. doi: 10.3934/cpaa.2012.11.911

[9]

Yaping Wu, Qian Xu. The existence and structure of large spiky steady states for S-K-T competition systems with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2011, 29 (1) : 367-385. doi: 10.3934/dcds.2011.29.367

[10]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete & Continuous Dynamical Systems - A, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589

[11]

Kazuo Yamazaki, Xueying Wang. Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences & Engineering, 2017, 14 (2) : 559-579. doi: 10.3934/mbe.2017033

[12]

Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete & Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147

[13]

Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. On a limiting system in the Lotka--Volterra competition with cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2004, 10 (1&2) : 435-458. doi: 10.3934/dcds.2004.10.435

[14]

Kousuke Kuto, Yoshio Yamada. Coexistence states for a prey-predator model with cross-diffusion. Conference Publications, 2005, 2005 (Special) : 536-545. doi: 10.3934/proc.2005.2005.536

[15]

Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745

[16]

F. Berezovskaya, Erika Camacho, Stephen Wirkus, Georgy Karev. "Traveling wave'' solutions of Fitzhugh model with cross-diffusion. Mathematical Biosciences & Engineering, 2008, 5 (2) : 239-260. doi: 10.3934/mbe.2008.5.239

[17]

Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133

[18]

Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163

[19]

Shanbing Li, Jianhua Wu. Effect of cross-diffusion in the diffusion prey-predator model with a protection zone. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1539-1558. doi: 10.3934/dcds.2017063

[20]

Masaki Kurokiba, Toshitaka Nagai, T. Ogawa. The uniform boundedness and threshold for the global existence of the radial solution to a drift-diffusion system. Communications on Pure & Applied Analysis, 2006, 5 (1) : 97-106. doi: 10.3934/cpaa.2006.5.97

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]