# American Institute of Mathematical Sciences

March  2015, 35(3): 1039-1057. doi: 10.3934/dcds.2015.35.1039

## On the integral systems with negative exponents

 1 Jiangsu Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, 210023, China

Received  April 2014 Revised  August 2014 Published  October 2014

This paper is concerned with the integral system $$\left \{ \begin{array}{ll} &u(x)=\int_{R^n}\frac{|x-y|^\lambda dy}{v^q(y)},\quad u>0~in~R^n,\\ &v(x)=\int_{R^n}\frac{|x-y|^\lambda dy}{u^p(y)},\quad v>0~in~R^n, \end{array} \right.$$ where $n \geq 1$, $p,q,\lambda \neq 0$. Such an integral system appears in the study of the conformal geometry. We obtain several necessary conditions for the existence of the $C^1$ positive entire solutions, particularly including the critical condition $$\frac{1}{p-1}+\frac{1}{q-1}=\frac{\lambda}{n},$$ which is the necessary and sufficient condition for the invariant of the system and some energy functionals under the scaling transformation. The necessary condition $\frac{1}{p-1}+\frac{1}{q-1}=\frac{\lambda}{n}$ can be relaxed to another weaker one $\min\{p,q\}>\frac{n+\lambda}{\lambda}$ for the system with double bounded coefficients. In addition, we classify the radial solutions in the case of $p=q$ as the form $$u(x)=v(x)=a(b^2+|x-x_0|^2)^{\frac{\lambda}{2}}$$ with $a,b>0$ and $x_0 \in R^n$. Finally, we also deduce some analogous necessary conditions of existence for the weighted system.
Citation: Yutian Lei. On the integral systems with negative exponents. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039
##### References:
 [1] G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems,, Milan J. Math., 76 (2008), 27. doi: 10.1007/s00032-008-0090-3. Google Scholar [2] A. Chang and M. del Mar Gonzalez, Fractional Laplacian in conformal geometry,, Adv. Math., 226 (2011), 1410. doi: 10.1016/j.aim.2010.07.016. Google Scholar [3] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar [4] W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Commun. Pure Appl. Anal., 4 (2005), 1. doi: 10.3934/cpaa.2005.4.1. Google Scholar [5] W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar [6] W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar [7] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar [8] Z. Cheng and C. Li, An extended discrete Hardy-Littlewood-Sobolev inequality,, Discrete Contin. Dyn. Syst., 34 (2014), 1951. doi: 10.3934/dcds.2014.34.1951. Google Scholar [9] Y. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents,, J. Differential Equations, 246 (2009), 216. doi: 10.1016/j.jde.2008.06.027. Google Scholar [10] J. Davila, I. Flores and I. Guerra, Multiplicity of solutions for a fourth order problem with power-type nonlinearity,, Math. Ann., 348 (2010), 143. doi: 10.1007/s00208-009-0476-8. Google Scholar [11] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406. Google Scholar [12] Z. Guo and J. Wei, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents,, Discrete Contin. Dyn. Syst., 34 (2014), 2561. doi: 10.3934/dcds.2014.34.2561. Google Scholar [13] Y. Hua and X. Yu, Necessary conditions for existence results of some integral system,, Abstr. Appl. Anal., (2013). Google Scholar [14] C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5. Google Scholar [15] Y. Lei and C. Li, Sharp Criteria of Liouville Type for some Nonlinear Systems,, arXiv:1301.6235, (2013). Google Scholar [16] Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43. doi: 10.1007/s00526-011-0450-7. Google Scholar [17] Y. Lei and Z. Lü, Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality,, Discrete Contin. Dyn. Syst., 33 (2013), 1987. doi: 10.3934/dcds.2013.33.1987. Google Scholar [18] Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153. Google Scholar [19] Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8. Google Scholar [20] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar [21] L. Ma and J. Wei, Properties of positive solutions to an elliptic equation with negative exponent,, J. Funct. Anal., 254 (2008), 1058. doi: 10.1016/j.jfa.2007.09.017. Google Scholar [22] P. J. McKenna and W. Reichel, Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry,, Electron. J. Differential Equations, (2003), 1. Google Scholar [23] Ph. Souplet, The proof of the Lane-Emden conjecture in 4 space dimensions,, Adv. Math., 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014. Google Scholar [24] S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials,, J. Funct. Anal., 263 (2012), 3857. doi: 10.1016/j.jfa.2012.09.012. Google Scholar [25] X. Xu, Exact solution of nonlinear conformally invarient integral equations in $R^3$,, Adv. Math., 194 (2005), 485. doi: 10.1016/j.aim.2004.07.004. Google Scholar [26] X. Xu, Uniqueness theorem for integral equations and its application,, J. Funct. Anal., 247 (2007), 95. doi: 10.1016/j.jfa.2007.03.005. Google Scholar [27] X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. Partial Differential Equations, 46 (2013), 75. doi: 10.1007/s00526-011-0474-z. Google Scholar

show all references

##### References:
 [1] G. Caristi, L. D'Ambrosio and E. Mitidieri, Representation formulae for solutions to some classes of higher order systems and related Liouville theorems,, Milan J. Math., 76 (2008), 27. doi: 10.1007/s00032-008-0090-3. Google Scholar [2] A. Chang and M. del Mar Gonzalez, Fractional Laplacian in conformal geometry,, Adv. Math., 226 (2011), 1410. doi: 10.1016/j.aim.2010.07.016. Google Scholar [3] W. Chen and C. Li, Classification of solutions of some nonlinear elliptic equations,, Duke Math. J., 63 (1991), 615. doi: 10.1215/S0012-7094-91-06325-8. Google Scholar [4] W. Chen and C. Li, Regularity of solutions for a system of integral equations,, Commun. Pure Appl. Anal., 4 (2005), 1. doi: 10.3934/cpaa.2005.4.1. Google Scholar [5] W. Chen and C. Li, An integral system and the Lane-Emden conjecture,, Discrete Contin. Dyn. Syst., 24 (2009), 1167. doi: 10.3934/dcds.2009.24.1167. Google Scholar [6] W. Chen, C. Li and B. Ou, Classification of solutions for a system of integral equations,, Comm. Partial Differential Equations, 30 (2005), 59. doi: 10.1081/PDE-200044445. Google Scholar [7] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation,, Comm. Pure Appl. Math., 59 (2006), 330. doi: 10.1002/cpa.20116. Google Scholar [8] Z. Cheng and C. Li, An extended discrete Hardy-Littlewood-Sobolev inequality,, Discrete Contin. Dyn. Syst., 34 (2014), 1951. doi: 10.3934/dcds.2014.34.1951. Google Scholar [9] Y. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents,, J. Differential Equations, 246 (2009), 216. doi: 10.1016/j.jde.2008.06.027. Google Scholar [10] J. Davila, I. Flores and I. Guerra, Multiplicity of solutions for a fourth order problem with power-type nonlinearity,, Math. Ann., 348 (2010), 143. doi: 10.1007/s00208-009-0476-8. Google Scholar [11] B. Gidas and J. Spruck, Global and local behavior of positive solutions of nonlinear elliptic equations,, Comm. Pure Appl. Math., 34 (1981), 525. doi: 10.1002/cpa.3160340406. Google Scholar [12] Z. Guo and J. Wei, Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents,, Discrete Contin. Dyn. Syst., 34 (2014), 2561. doi: 10.3934/dcds.2014.34.2561. Google Scholar [13] Y. Hua and X. Yu, Necessary conditions for existence results of some integral system,, Abstr. Appl. Anal., (2013). Google Scholar [14] C. Jin and C. Li, Qualitative analysis of some systems of integral equations,, Calc. Var. Partial Differential Equations, 26 (2006), 447. doi: 10.1007/s00526-006-0013-5. Google Scholar [15] Y. Lei and C. Li, Sharp Criteria of Liouville Type for some Nonlinear Systems,, arXiv:1301.6235, (2013). Google Scholar [16] Y. Lei, C. Li and C. Ma, Asymptotic radial symmetry and growth estimates of positive solutions to weighted Hardy-Littlewood-Sobolev system,, Calc. Var. Partial Differential Equations, 45 (2012), 43. doi: 10.1007/s00526-011-0450-7. Google Scholar [17] Y. Lei and Z. Lü, Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality,, Discrete Contin. Dyn. Syst., 33 (2013), 1987. doi: 10.3934/dcds.2013.33.1987. Google Scholar [18] Y. Li, Remark on some conformally invariant integral equations: The method of moving spheres,, J. Eur. Math. Soc., 6 (2004), 153. Google Scholar [19] Y. Li and M. Zhu, Uniqueness theorems through the method of moving spheres,, Duke Math. J., 80 (1995), 383. doi: 10.1215/S0012-7094-95-08016-8. Google Scholar [20] E. Lieb, Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities,, Ann. of Math., 118 (1983), 349. doi: 10.2307/2007032. Google Scholar [21] L. Ma and J. Wei, Properties of positive solutions to an elliptic equation with negative exponent,, J. Funct. Anal., 254 (2008), 1058. doi: 10.1016/j.jfa.2007.09.017. Google Scholar [22] P. J. McKenna and W. Reichel, Radial solutions of singular nonlinear biharmonic equations and applications to conformal geometry,, Electron. J. Differential Equations, (2003), 1. Google Scholar [23] Ph. Souplet, The proof of the Lane-Emden conjecture in 4 space dimensions,, Adv. Math., 221 (2009), 1409. doi: 10.1016/j.aim.2009.02.014. Google Scholar [24] S. Sun and Y. Lei, Fast decay estimates for integrable solutions of the Lane-Emden type integral systems involving the Wolff potentials,, J. Funct. Anal., 263 (2012), 3857. doi: 10.1016/j.jfa.2012.09.012. Google Scholar [25] X. Xu, Exact solution of nonlinear conformally invarient integral equations in $R^3$,, Adv. Math., 194 (2005), 485. doi: 10.1016/j.aim.2004.07.004. Google Scholar [26] X. Xu, Uniqueness theorem for integral equations and its application,, J. Funct. Anal., 247 (2007), 95. doi: 10.1016/j.jfa.2007.03.005. Google Scholar [27] X. Yu, Liouville type theorems for integral equations and integral systems,, Calc. Var. Partial Differential Equations, 46 (2013), 75. doi: 10.1007/s00526-011-0474-z. Google Scholar
 [1] Shota Sato, Eiji Yanagida. Asymptotic behavior of singular solutions for a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (11) : 4027-4043. doi: 10.3934/dcds.2012.32.4027 [2] Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 [3] Yutian Lei, Chao Ma. Asymptotic behavior for solutions of some integral equations. Communications on Pure & Applied Analysis, 2011, 10 (1) : 193-207. doi: 10.3934/cpaa.2011.10.193 [4] Hiroshi Morishita, Eiji Yanagida, Shoji Yotsutani. Structure of positive radial solutions including singular solutions to Matukuma's equation. Communications on Pure & Applied Analysis, 2005, 4 (4) : 871-888. doi: 10.3934/cpaa.2005.4.871 [5] Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597 [6] Chang-Shou Lin, Lei Zhang. Classification of radial solutions to Liouville systems with singularities. Discrete & Continuous Dynamical Systems - A, 2014, 34 (6) : 2617-2637. doi: 10.3934/dcds.2014.34.2617 [7] Mostafa Adimy, Laurent Pujo-Menjouet. Asymptotic behavior of a singular transport equation modelling cell division. Discrete & Continuous Dynamical Systems - B, 2003, 3 (3) : 439-456. doi: 10.3934/dcdsb.2003.3.439 [8] Minkyu Kwak, Kyong Yu. The asymptotic behavior of solutions of a semilinear parabolic equation. Discrete & Continuous Dynamical Systems - A, 1996, 2 (4) : 483-496. doi: 10.3934/dcds.1996.2.483 [9] Yongqin Liu. Asymptotic behavior of solutions to a nonlinear plate equation with memory. Communications on Pure & Applied Analysis, 2017, 16 (2) : 533-556. doi: 10.3934/cpaa.2017027 [10] Patricia J.Y. Wong. Existence of solutions to singular integral equations. Conference Publications, 2009, 2009 (Special) : 818-827. doi: 10.3934/proc.2009.2009.818 [11] Emmanuele DiBenedetto, Ugo Gianazza, Naian Liao. On the local behavior of non-negative solutions to a logarithmically singular equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1841-1858. doi: 10.3934/dcdsb.2012.17.1841 [12] Weijiu Liu. Asymptotic behavior of solutions of time-delayed Burgers' equation. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 47-56. doi: 10.3934/dcdsb.2002.2.47 [13] Yinbin Deng, Qi Gao. Asymptotic behavior of the positive solutions for an elliptic equation with Hardy term. Discrete & Continuous Dynamical Systems - A, 2009, 24 (2) : 367-380. doi: 10.3934/dcds.2009.24.367 [14] Sofía Nieto, Guillermo Reyes. Asymptotic behavior of the solutions of the inhomogeneous Porous Medium Equation with critical vanishing density. Communications on Pure & Applied Analysis, 2013, 12 (2) : 1123-1139. doi: 10.3934/cpaa.2013.12.1123 [15] Nakao Hayashi, Pavel I. Naumkin. Asymptotic behavior in time of solutions to the derivative nonlinear Schrödinger equation revisited. Discrete & Continuous Dynamical Systems - A, 1997, 3 (3) : 383-400. doi: 10.3934/dcds.1997.3.383 [16] Zongming Guo, Xiaohong Guan, Yonggang Zhao. Uniqueness and asymptotic behavior of solutions of a biharmonic equation with supercritical exponent. Discrete & Continuous Dynamical Systems - A, 2019, 39 (5) : 2613-2636. doi: 10.3934/dcds.2019109 [17] Zhijun Zhang. Optimal global asymptotic behavior of the solution to a singular monge-ampère equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1129-1145. doi: 10.3934/cpaa.2020053 [18] Zongming Guo, Juncheng Wei. Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (4) : 765-786. doi: 10.3934/cpaa.2008.7.765 [19] Michel Chipot, Senoussi Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure & Applied Analysis, 2009, 8 (1) : 179-193. doi: 10.3934/cpaa.2009.8.179 [20] Wenxiong Chen, Congming Li. Radial symmetry of solutions for some integral systems of Wolff type. Discrete & Continuous Dynamical Systems - A, 2011, 30 (4) : 1083-1093. doi: 10.3934/dcds.2011.30.1083

2018 Impact Factor: 1.143