March  2014, 34(3): 977-990. doi: 10.3934/dcds.2014.34.977

Preserving first integrals with symmetric Lie group methods

1. 

Norwegian University of Science and Technology, Department of Mathematical Sciences, 7491, Trondheim, Norway

Received  January 2013 Revised  May 2013 Published  August 2013

The discrete gradient approach is generalized to yield first integral preserving methods for differential equations in Lie groups.
Citation: Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 977-990. doi: 10.3934/dcds.2014.34.977
References:
[1]

R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine,, IMA Journal of Numerical Analysis, 22 (2002), 359. doi: 10.1093/imanum/22.3.359. Google Scholar

[2]

Luigi Brugnano, Felice Iavernaro and Donato Trigiante., Hamiltonian boundary value methods (energy preserving discrete line integral methods),, JNAIAM. J. Numer. Anal. Ind. Appl. Math., 5 (2010), 17. Google Scholar

[3]

E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neale, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical pdes using the "average vector field" method,, Journal of Computational Physics, 231 (2012), 6770. doi: 10.1016/j.jcp.2012.06.022. Google Scholar

[4]

E. Celledoni, H. Marthinsen and B. Owren, An introduction to Lie group integrators - basics, new developments and applications,, Journal of Computational Physics, (2013). doi: 10.1016/j.jcp.2012.12.031. Google Scholar

[5]

S. H. Christiansen, H. Z. Munthe-Kaas and B. Owren, Topics in structure-preserving discretization,, Acta Numerica, 20 (2011), 1. doi: 10.1017/S096249291100002X. Google Scholar

[6]

David Cohen and Ernst Hairer, Linear energy-preserving integrators for Poisson systems,, BIT, 51 (2011), 91. doi: 10.1007/s10543-011-0310-z. Google Scholar

[7]

M. Dahlby and B. Owren, A general framework for deriving integral preserving numerical methods for PDEs,, SIAM J. Sci. Comput., 33 (2011), 2318. doi: 10.1137/100810174. Google Scholar

[8]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Sci., 6 (1996), 449. doi: 10.1007/BF02440162. Google Scholar

[9]

E. Hairer, Energy-preserving variant of collocation methods,, Journal of Numerical Analysis, 5 (2010), 73. Google Scholar

[10]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods,, Acta Numerica, 9 (2000), 215. doi: 10.1017/S0962492900002154. Google Scholar

[11]

D. Lewis and J. C. Simo, Nonlinear stability of rotating pseudo-rigid bodies,, Proc. R. Soc. Lond. A, 427 (1990), 281. doi: 10.1098/rspa.1990.0014. Google Scholar

[12]

D. Lewis and J. C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems of Lie groups,, J. Nonlinear Sci., 4 (1994), 253. doi: 10.1007/BF02430634. Google Scholar

[13]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients,, Phil. Trans. Royal Soc. A, 357 (1999), 1021. doi: 10.1098/rsta.1999.0363. Google Scholar

[14]

A. Zanna, Collocation and relaxed collocation for the Fer and the Magnus expansions,, SIAM J. Numer. Anal., 36 (1999), 1145. doi: 10.1137/S0036142997326616. Google Scholar

show all references

References:
[1]

R. L. Adler, J. P. Dedieu, J. Y. Margulies, M. Martens and M. Shub, Newton's method on Riemannian manifolds and a geometric model for the human spine,, IMA Journal of Numerical Analysis, 22 (2002), 359. doi: 10.1093/imanum/22.3.359. Google Scholar

[2]

Luigi Brugnano, Felice Iavernaro and Donato Trigiante., Hamiltonian boundary value methods (energy preserving discrete line integral methods),, JNAIAM. J. Numer. Anal. Ind. Appl. Math., 5 (2010), 17. Google Scholar

[3]

E. Celledoni, V. Grimm, R. I. McLachlan, D. I. McLaren, D. O'Neale, B. Owren and G. R. W. Quispel, Preserving energy resp. dissipation in numerical pdes using the "average vector field" method,, Journal of Computational Physics, 231 (2012), 6770. doi: 10.1016/j.jcp.2012.06.022. Google Scholar

[4]

E. Celledoni, H. Marthinsen and B. Owren, An introduction to Lie group integrators - basics, new developments and applications,, Journal of Computational Physics, (2013). doi: 10.1016/j.jcp.2012.12.031. Google Scholar

[5]

S. H. Christiansen, H. Z. Munthe-Kaas and B. Owren, Topics in structure-preserving discretization,, Acta Numerica, 20 (2011), 1. doi: 10.1017/S096249291100002X. Google Scholar

[6]

David Cohen and Ernst Hairer, Linear energy-preserving integrators for Poisson systems,, BIT, 51 (2011), 91. doi: 10.1007/s10543-011-0310-z. Google Scholar

[7]

M. Dahlby and B. Owren, A general framework for deriving integral preserving numerical methods for PDEs,, SIAM J. Sci. Comput., 33 (2011), 2318. doi: 10.1137/100810174. Google Scholar

[8]

O. Gonzalez, Time integration and discrete Hamiltonian systems,, J. Nonlinear Sci., 6 (1996), 449. doi: 10.1007/BF02440162. Google Scholar

[9]

E. Hairer, Energy-preserving variant of collocation methods,, Journal of Numerical Analysis, 5 (2010), 73. Google Scholar

[10]

A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett and A. Zanna, Lie-group methods,, Acta Numerica, 9 (2000), 215. doi: 10.1017/S0962492900002154. Google Scholar

[11]

D. Lewis and J. C. Simo, Nonlinear stability of rotating pseudo-rigid bodies,, Proc. R. Soc. Lond. A, 427 (1990), 281. doi: 10.1098/rspa.1990.0014. Google Scholar

[12]

D. Lewis and J. C. Simo, Conserving algorithms for the dynamics of Hamiltonian systems of Lie groups,, J. Nonlinear Sci., 4 (1994), 253. doi: 10.1007/BF02430634. Google Scholar

[13]

R. I. McLachlan, G. R. W. Quispel and N. Robidoux, Geometric integration using discrete gradients,, Phil. Trans. Royal Soc. A, 357 (1999), 1021. doi: 10.1098/rsta.1999.0363. Google Scholar

[14]

A. Zanna, Collocation and relaxed collocation for the Fer and the Magnus expansions,, SIAM J. Numer. Anal., 36 (1999), 1145. doi: 10.1137/S0036142997326616. Google Scholar

[1]

Iasson Karafyllis, Lars Grüne. Feedback stabilization methods for the numerical solution of ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 283-317. doi: 10.3934/dcdsb.2011.16.283

[2]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[3]

Bin Wang, Arieh Iserles. Dirichlet series for dynamical systems of first-order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (1) : 281-298. doi: 10.3934/dcdsb.2014.19.281

[4]

Richard A. Norton, David I. McLaren, G. R. W. Quispel, Ari Stern, Antonella Zanna. Projection methods and discrete gradient methods for preserving first integrals of ODEs. Discrete & Continuous Dynamical Systems - A, 2015, 35 (5) : 2079-2098. doi: 10.3934/dcds.2015.35.2079

[5]

Joseph A. Connolly, Neville J. Ford. Comparison of numerical methods for fractional differential equations. Communications on Pure & Applied Analysis, 2006, 5 (2) : 289-307. doi: 10.3934/cpaa.2006.5.289

[6]

Ben-Yu Guo, Zhong-Qing Wang. A spectral collocation method for solving initial value problems of first order ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1029-1054. doi: 10.3934/dcdsb.2010.14.1029

[7]

Wen Li, Song Wang, Volker Rehbock. A 2nd-order one-point numerical integration scheme for fractional ordinary differential equations. Numerical Algebra, Control & Optimization, 2017, 7 (3) : 273-287. doi: 10.3934/naco.2017018

[8]

Raffaele D'Ambrosio, Martina Moccaldi, Beatrice Paternoster. Numerical preservation of long-term dynamics by stochastic two-step methods. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2763-2773. doi: 10.3934/dcdsb.2018105

[9]

Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87

[10]

Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353

[11]

Yingxiang Xu, Yongkui Zou. Preservation of homoclinic orbits under discretization of delay differential equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 275-299. doi: 10.3934/dcds.2011.31.275

[12]

Jaume Giné, Maite Grau, Jaume Llibre. Polynomial and rational first integrals for planar quasi--homogeneous polynomial differential systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4531-4547. doi: 10.3934/dcds.2013.33.4531

[13]

Michal Fečkan, Michal Pospíšil. Discretization of dynamical systems with first integrals. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3543-3554. doi: 10.3934/dcds.2013.33.3543

[14]

Sergio Albeverio, Sonia Mazzucchi. Infinite dimensional integrals and partial differential equations for stochastic and quantum phenomena. Journal of Geometric Mechanics, 2019, 11 (2) : 123-137. doi: 10.3934/jgm.2019006

[15]

W. Sarlet, G. E. Prince, M. Crampin. Generalized submersiveness of second-order ordinary differential equations. Journal of Geometric Mechanics, 2009, 1 (2) : 209-221. doi: 10.3934/jgm.2009.1.209

[16]

Stefano Maset. Conditioning and relative error propagation in linear autonomous ordinary differential equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (7) : 2879-2909. doi: 10.3934/dcdsb.2018165

[17]

Aeeman Fatima, F. M. Mahomed, Chaudry Masood Khalique. Conditional symmetries of nonlinear third-order ordinary differential equations. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : 655-666. doi: 10.3934/dcdss.2018040

[18]

Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control & Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517

[19]

Jean Mawhin, James R. Ward Jr. Guiding-like functions for periodic or bounded solutions of ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 39-54. doi: 10.3934/dcds.2002.8.39

[20]

Alessandro Fonda, Fabio Zanolin. Bounded solutions of nonlinear second order ordinary differential equations. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 91-98. doi: 10.3934/dcds.1998.4.91

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]