March  2014, 34(3): 883-901. doi: 10.3934/dcds.2014.34.883

A Gaussian quadrature rule for oscillatory integrals on a bounded interval

1. 

Dept. Computer Science, University of Leuven, Belgium, BE-3001 Heverlee, Belgium, Belgium, Belgium, Belgium

Received  November 2012 Revised  April 2013 Published  August 2013

We investigate a Gaussian quadrature rule and the corresponding orthogonal polynomials for the oscillatory weight function $e^{i\omega x}$ on the interval $[-1,1]$. We show that such a rule attains high asymptotic order, in the sense that the quadrature error quickly decreases as a function of the frequency $\omega$. However, accuracy is maintained for all values of $\omega$ and in particular the rule elegantly reduces to the classical Gauss-Legendre rule as $\omega \to 0$. The construction of such rules is briefly discussed, and though not all orthogonal polynomials exist, it is demonstrated numerically that rules with an even number of points are well defined. We show that these rules are optimal both in terms of asymptotic order as well as in terms of polynomial order.
Citation: Andreas Asheim, Alfredo Deaño, Daan Huybrechs, Haiyong Wang. A Gaussian quadrature rule for oscillatory integrals on a bounded interval. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 883-901. doi: 10.3934/dcds.2014.34.883
References:
[1]

A. Asheim and D. Huybrechs, Gaussian quadrature for oscillatory integral transforms,, IMA J. Numer. Anal, (2013). doi: 10.1093/imanum/drs060. Google Scholar

[2]

P. Bleher and A. Its, Asymptotics of the partition function of a random matrix model,, in, 55 (2005), 1943. doi: 10.5802/aif.2147. Google Scholar

[3]

L. Filon, On a quadrature formula for trigonometric integrals,, Proc. Roy. Soc. Edinburgh, 49 (1928), 38. Google Scholar

[4]

W. Gautschi, "Orthogonal Polynomials: Computation and Approximation,", Oxford University Press, (2004). Google Scholar

[5]

D. Huybrechs and S. Olver, Superinterpolation in highly oscillatory quadrature,, Found. Comput. Math, 12 (2012), 203. doi: 10.1007/s10208-011-9102-8. Google Scholar

[6]

D. Huybrechs and S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation,, SIAM J. Numer. Anal., 44 (2006), 1026. doi: 10.1137/050636814. Google Scholar

[7]

A. Iserles, Think globally, act locally: Solving highly-oscillatory ordinary differential equations,, Appl. Numer. Math., 43 (2002), 145. doi: 10.1016/S0168-9274(02)00122-8. Google Scholar

[8]

A. Iserles, On the numerical quadrature of highly-oscillating integrals I: Fourier transforms,, IMA J. Numer. Anal., 24 (2004), 365. doi: 10.1093/imanum/24.3.365. Google Scholar

[9]

A. Iserles and S. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives,, Proc. R. Soc. A, 461 (2005), 1383. doi: 10.1098/rspa.2004.1401. Google Scholar

[10]

A. Iserles and S. P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation,, BIT, 44 (2004), 755. doi: 10.1007/s10543-004-5243-3. Google Scholar

[11]

A. Iserles and S. P. Nørsett, On the computation of highly oscillatory multivariate integrals with stationary points,, BIT, 46 (2006), 549. doi: 10.1007/s10543-006-0071-2. Google Scholar

[12]

A. Iserles and S. P. Nørsett, Quadrature methods for multivariate highly oscillatory integrals using derivatives,, Math. Comp., 75 (2006), 1233. doi: 10.1090/S0025-5718-06-01854-0. Google Scholar

[13]

L. G. Ixaru and B. Paternoster, A Gauss quadrature rule for oscillatory integrands,, Comput. Phys. Commun., 133 (2001), 177. doi: 10.1016/S0010-4655(00)00173-9. Google Scholar

[14]

V. Ledoux and M. Van Daele, Interpolatory quadrature rules for oscillatory integrals,, J. Sci. Comput., 53 (2012), 586. doi: 10.1007/s10915-012-9589-4. Google Scholar

[15]

D. Levin, Fast integration of rapidly oscillatory functions,, J. Comput. Appl. Math., 67 (1996), 95. doi: 10.1016/0377-0427(94)00118-9. Google Scholar

[16]

J. L. López and N. M. Temme, Two-point Taylor expansions of analytic functions,, Stud. Appl. Math., 109 (2002), 297. doi: 10.1111/1467-9590.00225. Google Scholar

[17]

F. Olver, D. Lozier, R. Boisvert and C. Clark, "NIST Handbook of Mathematical Functions,", Cambridge University Press, (2010). Google Scholar

[18]

S. Olver, Moment-free numerical integration of highly oscillatory functions,, IMA J. Numer. Anal., 26 (2006), 213. doi: 10.1093/imanum/dri040. Google Scholar

[19]

S. Olver, Fast, numerically stable computation of oscillatory integrals with stationary points,, BIT, 50 (2010), 149. doi: 10.1007/s10543-010-0251-y. Google Scholar

show all references

References:
[1]

A. Asheim and D. Huybrechs, Gaussian quadrature for oscillatory integral transforms,, IMA J. Numer. Anal, (2013). doi: 10.1093/imanum/drs060. Google Scholar

[2]

P. Bleher and A. Its, Asymptotics of the partition function of a random matrix model,, in, 55 (2005), 1943. doi: 10.5802/aif.2147. Google Scholar

[3]

L. Filon, On a quadrature formula for trigonometric integrals,, Proc. Roy. Soc. Edinburgh, 49 (1928), 38. Google Scholar

[4]

W. Gautschi, "Orthogonal Polynomials: Computation and Approximation,", Oxford University Press, (2004). Google Scholar

[5]

D. Huybrechs and S. Olver, Superinterpolation in highly oscillatory quadrature,, Found. Comput. Math, 12 (2012), 203. doi: 10.1007/s10208-011-9102-8. Google Scholar

[6]

D. Huybrechs and S. Vandewalle, On the evaluation of highly oscillatory integrals by analytic continuation,, SIAM J. Numer. Anal., 44 (2006), 1026. doi: 10.1137/050636814. Google Scholar

[7]

A. Iserles, Think globally, act locally: Solving highly-oscillatory ordinary differential equations,, Appl. Numer. Math., 43 (2002), 145. doi: 10.1016/S0168-9274(02)00122-8. Google Scholar

[8]

A. Iserles, On the numerical quadrature of highly-oscillating integrals I: Fourier transforms,, IMA J. Numer. Anal., 24 (2004), 365. doi: 10.1093/imanum/24.3.365. Google Scholar

[9]

A. Iserles and S. Nørsett, Efficient quadrature of highly oscillatory integrals using derivatives,, Proc. R. Soc. A, 461 (2005), 1383. doi: 10.1098/rspa.2004.1401. Google Scholar

[10]

A. Iserles and S. P. Nørsett, On quadrature methods for highly oscillatory integrals and their implementation,, BIT, 44 (2004), 755. doi: 10.1007/s10543-004-5243-3. Google Scholar

[11]

A. Iserles and S. P. Nørsett, On the computation of highly oscillatory multivariate integrals with stationary points,, BIT, 46 (2006), 549. doi: 10.1007/s10543-006-0071-2. Google Scholar

[12]

A. Iserles and S. P. Nørsett, Quadrature methods for multivariate highly oscillatory integrals using derivatives,, Math. Comp., 75 (2006), 1233. doi: 10.1090/S0025-5718-06-01854-0. Google Scholar

[13]

L. G. Ixaru and B. Paternoster, A Gauss quadrature rule for oscillatory integrands,, Comput. Phys. Commun., 133 (2001), 177. doi: 10.1016/S0010-4655(00)00173-9. Google Scholar

[14]

V. Ledoux and M. Van Daele, Interpolatory quadrature rules for oscillatory integrals,, J. Sci. Comput., 53 (2012), 586. doi: 10.1007/s10915-012-9589-4. Google Scholar

[15]

D. Levin, Fast integration of rapidly oscillatory functions,, J. Comput. Appl. Math., 67 (1996), 95. doi: 10.1016/0377-0427(94)00118-9. Google Scholar

[16]

J. L. López and N. M. Temme, Two-point Taylor expansions of analytic functions,, Stud. Appl. Math., 109 (2002), 297. doi: 10.1111/1467-9590.00225. Google Scholar

[17]

F. Olver, D. Lozier, R. Boisvert and C. Clark, "NIST Handbook of Mathematical Functions,", Cambridge University Press, (2010). Google Scholar

[18]

S. Olver, Moment-free numerical integration of highly oscillatory functions,, IMA J. Numer. Anal., 26 (2006), 213. doi: 10.1093/imanum/dri040. Google Scholar

[19]

S. Olver, Fast, numerically stable computation of oscillatory integrals with stationary points,, BIT, 50 (2010), 149. doi: 10.1007/s10543-010-0251-y. Google Scholar

[1]

Avetik Arakelyan, Henrik Shahgholian, Jyotshana V. Prajapat. Two-and multi-phase quadrature surfaces. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2023-2045. doi: 10.3934/cpaa.2017099

[2]

Da Xu. Numerical solutions of viscoelastic bending wave equations with two term time kernels by Runge-Kutta convolution quadrature. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2389-2416. doi: 10.3934/dcdsb.2017122

[3]

Sanjay Khattri. Another note on some quadrature based three-step iterative methods for non-linear equations. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 549-555. doi: 10.3934/naco.2013.3.549

[4]

Graham W. Alldredge, Ruo Li, Weiming Li. Approximating the $M_2$ method by the extended quadrature method of moments for radiative transfer in slab geometry. Kinetic & Related Models, 2016, 9 (2) : 237-249. doi: 10.3934/krm.2016.9.237

[5]

Julian Koellermeier, Roman Pascal Schaerer, Manuel Torrilhon. A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods. Kinetic & Related Models, 2014, 7 (3) : 531-549. doi: 10.3934/krm.2014.7.531

[6]

Philippe Chartier, Norbert J. Mauser, Florian Méhats, Yong Zhang. Solving highly-oscillatory NLS with SAM: Numerical efficiency and long-time behavior. Discrete & Continuous Dynamical Systems - S, 2016, 9 (5) : 1327-1349. doi: 10.3934/dcdss.2016053

[7]

Claude Le Bris, Frédéric Legoll. Integrators for highly oscillatory Hamiltonian systems: An homogenization approach. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 347-373. doi: 10.3934/dcdsb.2010.13.347

[8]

Emmanuel Frénod, Sever A. Hirstoaga, Eric Sonnendrücker. An exponential integrator for a highly oscillatory vlasov equation. Discrete & Continuous Dynamical Systems - S, 2015, 8 (1) : 169-183. doi: 10.3934/dcdss.2015.8.169

[9]

Hermann Brunner. On Volterra integral operators with highly oscillatory kernels. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 915-929. doi: 10.3934/dcds.2014.34.915

[10]

Yahong Peng, Yaguang Wang. Reflection of highly oscillatory waves with continuous oscillatory spectra for semilinear hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1293-1306. doi: 10.3934/dcds.2009.24.1293

[11]

Yoonsang Lee, Bjorn Engquist. Variable step size multiscale methods for stiff and highly oscillatory dynamical systems. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1079-1097. doi: 10.3934/dcds.2014.34.1079

[12]

Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1819-1833. doi: 10.3934/dcdsb.2018089

[13]

Marissa Condon, Jing Gao, Arieh Iserles. On asymptotic expansion solvers for highly oscillatory semi-explicit DAEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 4813-4837. doi: 10.3934/dcds.2016008

[14]

Darren C. Ong. Orthogonal polynomials on the unit circle with quasiperiodic Verblunsky coefficients have generic purely singular continuous spectrum. Conference Publications, 2013, 2013 (special) : 605-609. doi: 10.3934/proc.2013.2013.605

[15]

Fazlollah Soleymani, Ali Akgül. European option valuation under the Bates PIDE in finance: A numerical implementation of the Gaussian scheme. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 889-909. doi: 10.3934/dcdss.2020052

[16]

G. Bonanno, Salvatore A. Marano. Highly discontinuous elliptic problems. Conference Publications, 1998, 1998 (Special) : 118-123. doi: 10.3934/proc.1998.1998.118

[17]

Palle E. T. Jorgensen and Steen Pedersen. Orthogonal harmonic analysis of fractal measures. Electronic Research Announcements, 1998, 4: 35-42.

[18]

K. T. Arasu, Manil T. Mohan. Optimization problems with orthogonal matrix constraints. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 413-440. doi: 10.3934/naco.2018026

[19]

Michael Boshernitzan, Máté Wierdl. Almost-everywhere convergence and polynomials. Journal of Modern Dynamics, 2008, 2 (3) : 465-470. doi: 10.3934/jmd.2008.2.465

[20]

Elisavet Konstantinou, Aristides Kontogeorgis. Some remarks on the construction of class polynomials. Advances in Mathematics of Communications, 2011, 5 (1) : 109-118. doi: 10.3934/amc.2011.5.109

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (5)

[Back to Top]