# American Institute of Mathematical Sciences

February  2014, 34(2): 709-732. doi: 10.3934/dcds.2014.34.709

## On the derivative of the $\alpha$-Farey-Minkowski function

 1 Department of Mathematics, University Walk, Clifton, Bristol BS8 1TW, United Kingdom

Received  February 2013 Revised  April 2013 Published  August 2013

In this paper we study the family of $\alpha$-Farey-Minkowski functions $\theta_\alpha$, for an arbitrary countable partition $\alpha$ of the unit interval with atoms which accumulate only at the origin, which are the conjugating homeomorphisms between each of the $\alpha$-Farey systems and the tent map. We first show that each function $\theta_\alpha$ is singular with respect to the Lebesgue measure and then demonstrate that the unit interval can be written as the disjoint union of the following three sets: $\Theta_0 : = \{x \in [0,1] : \theta_\alpha'(x)=0\}, \Theta_{\infty} : = \{ x \in [0,1] : \theta_\alpha'(x)=\infty \}$ and $\Theta_\sim : = \{ x \in [0,1] : \theta_\alpha'(x)\ does\ not\ exist \}$. The main result is that $\dim_{\mathrm{H}}(\Theta_\infty)=\dim_{\mathrm{H}}(\Theta_\sim)=\sigma_\alpha(\log2)<\dim_{\mathrm{H}}(\Theta_0)=1,$ where $\sigma_\alpha(\log2)$ denotes the Hausdorff dimension of the level set $\{x\in [0,1]:\Lambda(F_\alpha, x)=\log2\}$ and $\Lambda(F_\alpha, x)$ is the Lyapunov exponent of the map $F_\alpha$ at the point $x$. The proof of the theorem employs the multifractal formalism for $\alpha$-Farey systems.
Citation: Sara Munday. On the derivative of the $\alpha$-Farey-Minkowski function. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 709-732. doi: 10.3934/dcds.2014.34.709
##### References:
 [1] L. Barreira and J. Schmeling, Sets of "non-typical'' points have full topological entropy and full Hausdorff dimension,, Israel J. Math., 116 (2000), 29. doi: 10.1007/BF02773211. Google Scholar [2] J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp, Ergodic properties of generalised Lüroth series,, Acta Arith., 74 (1996), 311. Google Scholar [3] K. Falconer, "Techniques in Fractal Geometry,'', John Wiley & Sons, (1997). Google Scholar [4] J. Jaerisch and M. Kesseböhmer, Regularity of multifractal spectra of conformal iterated function systems,, Trans. Amer. Math. Soc., 363 (2011), 313. doi: 10.1090/S0002-9947-2010-05326-7. Google Scholar [5] M. Kesseböhmer, S. Munday and B. O. Stratmann, Strong renewal theorems and Lyapunov spectra for $\alpha$-Farey and $\alpha$-Lüroth systems,, Ergodic Theory Dynam. Systems, 32 (2012), 989. doi: 10.1017/S0143385711000186. Google Scholar [6] M. Kesseböhmer and B. O. Stratmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates,, J. Reine Angew. Math., 605 (2007), 133. doi: 10.1515/CRELLE.2007.029. Google Scholar [7] M. Kesseböhmer and B. O. Stratmann, Fractal analysis for sets of non-differentiability of Minkowski's question mark function,, J. Number Theory, 128 (2008), 2663. doi: 10.1016/j.jnt.2007.12.010. Google Scholar [8] H. Minkowski, "Geometrie der Zahlen,'', Gesammelte Abhandlungen, (1967), 43. Google Scholar [9] S. Munday, "Finite and Infinite Ergodic Theory for Linear and Conformal Dynamical Systems,'', Ph.D Thesis, (2011). Google Scholar [10] J. Paradís and P. Viader, The derivative of Minkowski's $?(x)$ function,, J. Math. Anal. Appl., 253 (2001), 107. doi: 10.1006/jmaa.2000.7064. Google Scholar [11] J. Paradís, P. Viader and L. Bibiloni, Riesz-Nágy singular functions revisited,, J. Math. Anal. Appl., 329 (2007), 592. doi: 10.1016/j.jmaa.2006.06.082. Google Scholar [12] H. L. Royden, "Measure Theory,'', Third edition, (1988). Google Scholar [13] R. Salem, On some singular monotonic functions which are strictly increasing,, Trans. Amer. Math. Soc., 53 (1943), 427. doi: 10.1090/S0002-9947-1943-0007929-6. Google Scholar [14] J. Tseng, Schmidt games and Markov partitions,, Nonlinearity, 22 (2009), 525. doi: 10.1088/0951-7715/22/3/001. Google Scholar

show all references

##### References:
 [1] L. Barreira and J. Schmeling, Sets of "non-typical'' points have full topological entropy and full Hausdorff dimension,, Israel J. Math., 116 (2000), 29. doi: 10.1007/BF02773211. Google Scholar [2] J. Barrionuevo, R. M. Burton, K. Dajani and C. Kraaikamp, Ergodic properties of generalised Lüroth series,, Acta Arith., 74 (1996), 311. Google Scholar [3] K. Falconer, "Techniques in Fractal Geometry,'', John Wiley & Sons, (1997). Google Scholar [4] J. Jaerisch and M. Kesseböhmer, Regularity of multifractal spectra of conformal iterated function systems,, Trans. Amer. Math. Soc., 363 (2011), 313. doi: 10.1090/S0002-9947-2010-05326-7. Google Scholar [5] M. Kesseböhmer, S. Munday and B. O. Stratmann, Strong renewal theorems and Lyapunov spectra for $\alpha$-Farey and $\alpha$-Lüroth systems,, Ergodic Theory Dynam. Systems, 32 (2012), 989. doi: 10.1017/S0143385711000186. Google Scholar [6] M. Kesseböhmer and B. O. Stratmann, A multifractal analysis for Stern-Brocot intervals, continued fractions and Diophantine growth rates,, J. Reine Angew. Math., 605 (2007), 133. doi: 10.1515/CRELLE.2007.029. Google Scholar [7] M. Kesseböhmer and B. O. Stratmann, Fractal analysis for sets of non-differentiability of Minkowski's question mark function,, J. Number Theory, 128 (2008), 2663. doi: 10.1016/j.jnt.2007.12.010. Google Scholar [8] H. Minkowski, "Geometrie der Zahlen,'', Gesammelte Abhandlungen, (1967), 43. Google Scholar [9] S. Munday, "Finite and Infinite Ergodic Theory for Linear and Conformal Dynamical Systems,'', Ph.D Thesis, (2011). Google Scholar [10] J. Paradís and P. Viader, The derivative of Minkowski's $?(x)$ function,, J. Math. Anal. Appl., 253 (2001), 107. doi: 10.1006/jmaa.2000.7064. Google Scholar [11] J. Paradís, P. Viader and L. Bibiloni, Riesz-Nágy singular functions revisited,, J. Math. Anal. Appl., 329 (2007), 592. doi: 10.1016/j.jmaa.2006.06.082. Google Scholar [12] H. L. Royden, "Measure Theory,'', Third edition, (1988). Google Scholar [13] R. Salem, On some singular monotonic functions which are strictly increasing,, Trans. Amer. Math. Soc., 53 (1943), 427. doi: 10.1090/S0002-9947-1943-0007929-6. Google Scholar [14] J. Tseng, Schmidt games and Markov partitions,, Nonlinearity, 22 (2009), 525. doi: 10.1088/0951-7715/22/3/001. Google Scholar
 [1] Juan Wang, Xiaodan Zhang, Yun Zhao. Dimension estimates for arbitrary subsets of limit sets of a Markov construction and related multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 2315-2332. doi: 10.3934/dcds.2014.34.2315 [2] Godofredo Iommi, Bartłomiej Skorulski. Multifractal analysis for the exponential family. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 857-869. doi: 10.3934/dcds.2006.16.857 [3] Julien Barral, Yan-Hui Qu. On the higher-dimensional multifractal analysis. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 1977-1995. doi: 10.3934/dcds.2012.32.1977 [4] Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627 [5] Zhihui Yuan. Multifractal analysis of random weak Gibbs measures. Discrete & Continuous Dynamical Systems - A, 2017, 37 (10) : 5367-5405. doi: 10.3934/dcds.2017234 [6] Luis Barreira. Dimension theory of flows: A survey. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3345-3362. doi: 10.3934/dcdsb.2015.20.3345 [7] Manfred Deistler. Singular arma systems: A structure theory. Numerical Algebra, Control & Optimization, 2019, 9 (3) : 383-391. doi: 10.3934/naco.2019025 [8] Mihaela Roxana Nicolai, Dan Tiba. Implicit functions and parametrizations in dimension three: Generalized solutions. Discrete & Continuous Dynamical Systems - A, 2015, 35 (6) : 2701-2710. doi: 10.3934/dcds.2015.35.2701 [9] Luis Barreira, César Silva. Lyapunov exponents for continuous transformations and dimension theory. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 469-490. doi: 10.3934/dcds.2005.13.469 [10] Hans Koch, Rafael De La Llave, Charles Radin. Aubry-Mather theory for functions on lattices. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 135-151. doi: 10.3934/dcds.1997.3.135 [11] Piotr Fijałkowski. A global inversion theorem for functions with singular points. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 173-180. doi: 10.3934/dcdsb.2018011 [12] Bernard Dacorogna. Necessary and sufficient conditions for strong ellipticity of isotropic functions in any dimension. Discrete & Continuous Dynamical Systems - B, 2001, 1 (2) : 257-263. doi: 10.3934/dcdsb.2001.1.257 [13] Rui-Qi Liu, Chun-Lei Tang, Jia-Feng Liao, Xing-Ping Wu. Positive solutions of Kirchhoff type problem with singular and critical nonlinearities in dimension four. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1841-1856. doi: 10.3934/cpaa.2016006 [14] Manassés de Souza. On a singular Hamiltonian elliptic systems involving critical growth in dimension two. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1859-1874. doi: 10.3934/cpaa.2012.11.1859 [15] Jaroslaw Smieja, Malgorzata Kardynska, Arkadiusz Jamroz. The meaning of sensitivity functions in signaling pathways analysis. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2697-2707. doi: 10.3934/dcdsb.2014.19.2697 [16] Frédéric Grognard, Frédéric Mazenc, Alain Rapaport. Polytopic Lyapunov functions for persistence analysis of competing species. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 73-93. doi: 10.3934/dcdsb.2007.8.73 [17] Mirela Domijan, Markus Kirkilionis. Graph theory and qualitative analysis of reaction networks. Networks & Heterogeneous Media, 2008, 3 (2) : 295-322. doi: 10.3934/nhm.2008.3.295 [18] Xifeng Su, Lin Wang, Jun Yan. Weak KAM theory for HAMILTON-JACOBI equations depending on unknown functions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6487-6522. doi: 10.3934/dcds.2016080 [19] Ilona Gucwa, Peter Szmolyan. Geometric singular perturbation analysis of an autocatalator model. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : 783-806. doi: 10.3934/dcdss.2009.2.783 [20] Zhong-Qing Wang, Ben-Yu Guo, Yan-Na Wu. Pseudospectral method using generalized Laguerre functions for singular problems on unbounded domains. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1019-1038. doi: 10.3934/dcdsb.2009.11.1019

2018 Impact Factor: 1.143