February  2014, 34(2): 689-707. doi: 10.3934/dcds.2014.34.689

Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation

1. 

Department of Mathematics and Information Science, Binzhou University, Binzhou Shandong 256600, China

2. 

School of Mathematical Sciences, Fudan University, Shanghai 200433, China

Received  August 2012 Revised  May 2013 Published  August 2013

In this paper, we consider the non-autonomous Benjamin-Ono equation $$u_t+\mathscr{H}u_{xx}- uu_x- (F(\omega t,x,u))_x=0$$ under periodic boundary conditions. Using an abstract infinite dimensional KAM theorem dealing with unbounded perturbation vector-field and partial Birkhoff normal form, we will prove that there exists a Cantorian branch of KAM tori and thus many time quasi-periodic solutions for the above equation.
Citation: Lufang Mi, Kangkang Zhang. Invariant Tori for Benjamin-Ono Equation with Unbounded quasi-periodically forced Perturbation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 689-707. doi: 10.3934/dcds.2014.34.689
References:
[1]

M. J. Ablowitz and A. S. Fokas, The inverse scattering transform for the Benjamin-Ono equation-a pivot for multidimensional problems,, Stud. Appl. Math., 68 (1983), 1. Google Scholar

[2]

D. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods,, Comm. Math. Phys., 219 (2001), 465. doi: 10.1007/s002200100426. Google Scholar

[3]

M. Berti and M. Procesi, Quasi-periodic solutions of completely resonant forced wave equations,, Comm. Partial Differential Equations, 31 (2006), 959. doi: 10.1080/03605300500358129. Google Scholar

[4]

Zh. Burgeĭn, Recent progress on quasi-periodic lattice Schrödinger operators and Hamiltonian PDEs,, Russian Math. Surveys, 59 (2004), 231. doi: 10.1070/RM2004v059n02ABEH000716. Google Scholar

[5]

M. Gao and J. Liu, Quasi-periodic solutions for derivative nonlinear Schrödinger equation,, Discrete Contin. Dyn. Syst., 32 (2012), 2101. doi: 10.3934/dcds.2012.32.2101. Google Scholar

[6]

L. Jiao and Y. Wang, The construction of quasi-periocic solutions of quasi-periodic forced Schrödinger equation,, Commun. Pure Appl. Anal., 8 (2009), 1585. doi: 10.3934/cpaa.2009.8.1585. Google Scholar

[7]

T. Kappeler and J. Pöschel, "KdV & KAM,", Ergebnisse der Mathematik und ihrer Grenzgebiete, 45 (2003). Google Scholar

[8]

S. Klainerman, Long-time behaviour of solutions to nonliear wave equations,, in, (1984), 1209. Google Scholar

[9]

S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation,, Ann. Math. (2), 143 (1996), 149. doi: 10.2307/2118656. Google Scholar

[10]

S. B. Kuksin, On small-denominators equations with large variable coefficients,, Z. Angew. Math. Phys., 48 (1997), 262. doi: 10.1007/PL00001476. Google Scholar

[11]

S. B. Kuksin, "Analysis of Hamiltonian PDEs,", Oxford Lecture Series in Mathematics and its Applications, 19 (2000). Google Scholar

[12]

S. B. Kuksin, Fifteen years of KAM in PDE,, in, 212 (2004), 237. Google Scholar

[13]

P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Phys., 5 (1964), 611. doi: 10.1063/1.1704154. Google Scholar

[14]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient,, Commun. Pure Appl. Math., 63 (2010), 1145. doi: 10.1002/cpa.20314. Google Scholar

[15]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations,, Commun. Math. Phys., 307 (2011), 629. doi: 10.1007/s00220-011-1353-3. Google Scholar

[16]

L. Mi, Quasi-periodic Solutions of derivative nonlinear Schrödinger equations with a given potential,, J. Math. Anal. Appl., 390 (2012), 335. doi: 10.1016/j.jmaa.2012.01.046. Google Scholar

[17]

L. Molinet, Global well-posedness in the energy space for the Benjamin-Ono equation on the circle,, Math. Ann., 337 (2007), 353. doi: 10.1007/s00208-006-0038-2. Google Scholar

[18]

L. Molinet, Global well-posedness in $L^2$ for the periodic Benjamin-Ono equation,, Amer. J. Math., 130 (2008), 635. doi: 10.1353/ajm.0.0001. Google Scholar

[19]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equations,, Comment. Math. Helv., 71 (1996), 269. doi: 10.1007/BF02566420. Google Scholar

[20]

J. Si, Quasi-periodic solutions of a non-autonomous wave equations with quasi-periodic forcing,, J. Differential Equations, 252 (2012), 5274. doi: 10.1016/j.jde.2012.01.034. Google Scholar

[21]

Y. Wang, Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation,, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2682. doi: 10.1016/j.cnsns.2011.10.022. Google Scholar

[22]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differtial equations,, Nonliearity, 24 (2011), 1189. doi: 10.1088/0951-7715/24/4/010. Google Scholar

show all references

References:
[1]

M. J. Ablowitz and A. S. Fokas, The inverse scattering transform for the Benjamin-Ono equation-a pivot for multidimensional problems,, Stud. Appl. Math., 68 (1983), 1. Google Scholar

[2]

D. Bambusi and S. Graffi, Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods,, Comm. Math. Phys., 219 (2001), 465. doi: 10.1007/s002200100426. Google Scholar

[3]

M. Berti and M. Procesi, Quasi-periodic solutions of completely resonant forced wave equations,, Comm. Partial Differential Equations, 31 (2006), 959. doi: 10.1080/03605300500358129. Google Scholar

[4]

Zh. Burgeĭn, Recent progress on quasi-periodic lattice Schrödinger operators and Hamiltonian PDEs,, Russian Math. Surveys, 59 (2004), 231. doi: 10.1070/RM2004v059n02ABEH000716. Google Scholar

[5]

M. Gao and J. Liu, Quasi-periodic solutions for derivative nonlinear Schrödinger equation,, Discrete Contin. Dyn. Syst., 32 (2012), 2101. doi: 10.3934/dcds.2012.32.2101. Google Scholar

[6]

L. Jiao and Y. Wang, The construction of quasi-periocic solutions of quasi-periodic forced Schrödinger equation,, Commun. Pure Appl. Anal., 8 (2009), 1585. doi: 10.3934/cpaa.2009.8.1585. Google Scholar

[7]

T. Kappeler and J. Pöschel, "KdV & KAM,", Ergebnisse der Mathematik und ihrer Grenzgebiete, 45 (2003). Google Scholar

[8]

S. Klainerman, Long-time behaviour of solutions to nonliear wave equations,, in, (1984), 1209. Google Scholar

[9]

S. B. Kuksin and J. Pöschel, Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation,, Ann. Math. (2), 143 (1996), 149. doi: 10.2307/2118656. Google Scholar

[10]

S. B. Kuksin, On small-denominators equations with large variable coefficients,, Z. Angew. Math. Phys., 48 (1997), 262. doi: 10.1007/PL00001476. Google Scholar

[11]

S. B. Kuksin, "Analysis of Hamiltonian PDEs,", Oxford Lecture Series in Mathematics and its Applications, 19 (2000). Google Scholar

[12]

S. B. Kuksin, Fifteen years of KAM in PDE,, in, 212 (2004), 237. Google Scholar

[13]

P. D. Lax, Development of singularities of solutions of nonlinear hyperbolic partial differential equations,, J. Math. Phys., 5 (1964), 611. doi: 10.1063/1.1704154. Google Scholar

[14]

J. Liu and X. Yuan, Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient,, Commun. Pure Appl. Math., 63 (2010), 1145. doi: 10.1002/cpa.20314. Google Scholar

[15]

J. Liu and X. Yuan, A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations,, Commun. Math. Phys., 307 (2011), 629. doi: 10.1007/s00220-011-1353-3. Google Scholar

[16]

L. Mi, Quasi-periodic Solutions of derivative nonlinear Schrödinger equations with a given potential,, J. Math. Anal. Appl., 390 (2012), 335. doi: 10.1016/j.jmaa.2012.01.046. Google Scholar

[17]

L. Molinet, Global well-posedness in the energy space for the Benjamin-Ono equation on the circle,, Math. Ann., 337 (2007), 353. doi: 10.1007/s00208-006-0038-2. Google Scholar

[18]

L. Molinet, Global well-posedness in $L^2$ for the periodic Benjamin-Ono equation,, Amer. J. Math., 130 (2008), 635. doi: 10.1353/ajm.0.0001. Google Scholar

[19]

J. Pöschel, Quasi-periodic solutions for a nonlinear wave equations,, Comment. Math. Helv., 71 (1996), 269. doi: 10.1007/BF02566420. Google Scholar

[20]

J. Si, Quasi-periodic solutions of a non-autonomous wave equations with quasi-periodic forcing,, J. Differential Equations, 252 (2012), 5274. doi: 10.1016/j.jde.2012.01.034. Google Scholar

[21]

Y. Wang, Quasi-periodic solutions of a quasi-periodically forced nonlinear beam equation,, Commun. Nonlinear Sci. Numer. Simulat., 17 (2012), 2682. doi: 10.1016/j.cnsns.2011.10.022. Google Scholar

[22]

J. Zhang, M. Gao and X. Yuan, KAM tori for reversible partial differtial equations,, Nonliearity, 24 (2011), 1189. doi: 10.1088/0951-7715/24/4/010. Google Scholar

[1]

Dongfeng Yan. KAM Tori for generalized Benjamin-Ono equation. Communications on Pure & Applied Analysis, 2015, 14 (3) : 941-957. doi: 10.3934/cpaa.2015.14.941

[2]

Jerry Bona, H. Kalisch. Singularity formation in the generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (1) : 27-45. doi: 10.3934/dcds.2004.11.27

[3]

Amin Esfahani, Steve Levandosky. Solitary waves of the rotation-generalized Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (2) : 663-700. doi: 10.3934/dcds.2013.33.663

[4]

Sondre Tesdal Galtung. A convergent Crank-Nicolson Galerkin scheme for the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (3) : 1243-1268. doi: 10.3934/dcds.2018051

[5]

Nakao Hayashi, Pavel Naumkin. On the reduction of the modified Benjamin-Ono equation to the cubic derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (1) : 237-255. doi: 10.3934/dcds.2002.8.237

[6]

Kenta Ohi, Tatsuo Iguchi. A two-phase problem for capillary-gravity waves and the Benjamin-Ono equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1205-1240. doi: 10.3934/dcds.2009.23.1205

[7]

G. Fonseca, G. Rodríguez-Blanco, W. Sandoval. Well-posedness and ill-posedness results for the regularized Benjamin-Ono equation in weighted Sobolev spaces. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1327-1341. doi: 10.3934/cpaa.2015.14.1327

[8]

Yingte Sun, Xiaoping Yuan. Quasi-periodic solution of quasi-linear fifth-order KdV equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (12) : 6241-6285. doi: 10.3934/dcds.2018268

[9]

Alan Compelli, Rossen Ivanov. Benjamin-Ono model of an internal wave under a flat surface. Discrete & Continuous Dynamical Systems - A, 2019, 39 (8) : 4519-4532. doi: 10.3934/dcds.2019185

[10]

Yanling Shi, Junxiang Xu, Xindong Xu. Quasi-periodic solutions of generalized Boussinesq equation with quasi-periodic forcing. Discrete & Continuous Dynamical Systems - B, 2017, 22 (6) : 2501-2519. doi: 10.3934/dcdsb.2017104

[11]

Lei Jiao, Yiqian Wang. The construction of quasi-periodic solutions of quasi-periodic forced Schrödinger equation. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1585-1606. doi: 10.3934/cpaa.2009.8.1585

[12]

Siqi Xu, Dongfeng Yan. Smooth quasi-periodic solutions for the perturbed mKdV equation. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1857-1869. doi: 10.3934/cpaa.2016019

[13]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

[14]

Zhenguo Liang, Jiansheng Geng. Quasi-periodic solutions for 1D resonant beam equation. Communications on Pure & Applied Analysis, 2006, 5 (4) : 839-853. doi: 10.3934/cpaa.2006.5.839

[15]

Yanling Shi, Junxiang Xu. Quasi-periodic solutions for a class of beam equation system. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-23. doi: 10.3934/dcdsb.2019171

[16]

Luc Molinet, Francis Ribaud. Well-posedness in $ H^1 $ for generalized Benjamin-Ono equations on the circle. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1295-1311. doi: 10.3934/dcds.2009.23.1295

[17]

Eddye Bustamante, José Jiménez Urrea, Jorge Mejía. The Cauchy problem for a family of two-dimensional fractional Benjamin-Ono equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1177-1203. doi: 10.3934/cpaa.2019057

[18]

Jerry L. Bona, Laihan Luo. Large-time asymptotics of the generalized Benjamin-Ono-Burgers equation. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 15-50. doi: 10.3934/dcdss.2011.4.15

[19]

Dario Bambusi, A. Carati, A. Ponno. The nonlinear Schrödinger equation as a resonant normal form. Discrete & Continuous Dynamical Systems - B, 2002, 2 (1) : 109-128. doi: 10.3934/dcdsb.2002.2.109

[20]

Claudia Valls. On the quasi-periodic solutions of generalized Kaup systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (1) : 467-482. doi: 10.3934/dcds.2015.35.467

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]