December  2014, 34(12): 5085-5097. doi: 10.3934/dcds.2014.34.5085

Mathematical theory of solids: From quantum mechanics to continuum models

1. 

Department of Mathematics, Princeton University, Princeton, N.J. 08544

2. 

Departments of Mathematics, Physics, and Chemistry, Duke University, Durham NC, United States

Received  March 2014 Revised  June 2014 Published  June 2014

N/A
Citation: Weinan E, Jianfeng Lu. Mathematical theory of solids: From quantum mechanics to continuum models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5085-5097. doi: 10.3934/dcds.2014.34.5085
References:
[1]

M. Arroyo and T. Belytschko, Nonlinear mechanical response and rippling of thick multiwalled Carbon nanotubes,, Phys. Rev. Lett., 91 (2003). Google Scholar

[2]

M. Arroyo and T. Belytschko, Finite element methods for the nonlinear mechanics of crystalline sheets and nanotubes,, Int. J. Numer. Methods Eng., 59 (2004), 419. doi: 10.1002/nme.944. Google Scholar

[3]

X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics,, Arch. Ration. Mech. Anal., 164 (2002), 341. doi: 10.1007/s00205-002-0218-5. Google Scholar

[4]

M. Born, Thermodynamics of crystals and melting,, J. Chem. Phys., 7 (1939), 591. Google Scholar

[5]

A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: The one-dimensional case,, Arch. Ration. Mech. Anal., 146 (1999), 23. doi: 10.1007/s002050050135. Google Scholar

[6]

E. Cancès and M. Lewin, The dielectric permittivity of crystals in the reduced Hartree-Fock approximation,, Arch. Ration. Mech. Anal., 197 (2010), 139. doi: 10.1007/s00205-009-0275-0. Google Scholar

[7]

E. Cancès and G. Stoltz, A mathematical formulation of the random phase approximation for crystals,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 887. doi: 10.1016/j.anihpc.2012.05.004. Google Scholar

[8]

A.-L. Cauchy, Sur l'equilibre et le mouvement d'un système de points materiels sollicités par forces d'attraction ou de répulsion mutuelle,, Ex. de Math., 3 (1828), 277. Google Scholar

[9]

A.-L. Cauchy, De la pression on tension dans un système de points matériels,, Ex. de Math., 3 (1828), 253. Google Scholar

[10]

S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$,, J. Eur. Math. Soc., 8 (2006), 515. doi: 10.4171/JEMS/65. Google Scholar

[11]

W. E and J. Lu, The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy-Born rule,, Arch. Ration. Mech. Anal., 199 (2011), 407. doi: 10.1007/s00205-010-0339-1. Google Scholar

[12]

W. E and J. Lu, Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsacker model,, J. Math. Phys., 53 (2012). Google Scholar

[13]

W. E and J. Lu, The Kohn-Sham equation for deformed crystals,, Mem. Amer. Math. Soc., 221 (2013). doi: 10.1090/S0065-9266-2012-00659-9. Google Scholar

[14]

W. E, J. Lu and X. Yang, Effective Maxwell equations from time-dependent density functional theory,, Acta Math. Sin. (Eng. Ser.), 27 (2011), 339. doi: 10.1007/s10114-011-0555-0. Google Scholar

[15]

W. E and P. B. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems,, Arch. Ration. Mech. Anal., 183 (2007), 241. doi: 10.1007/s00205-006-0031-7. Google Scholar

[16]

G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice,, J. Nonlinear Sci., 12 (2002), 445. doi: 10.1007/s00332-002-0495-z. Google Scholar

[17]

P. Hohenberg and W. Kohn, Inhomogeneous electron gas,, Phys. Rev. (2), 136 (1964). doi: 10.1103/PhysRev.136.B864. Google Scholar

[18]

W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects,, Phys. Rev., 140 (1965). doi: 10.1103/PhysRev.140.A1133. Google Scholar

[19]

F. A. Lindemann, Uber die Berechnung Molecular Eigenfrequnzen,, Physik. Z., 11 (1910), 609. Google Scholar

[20]

M. P. Marder, Condensed Matter Physics,, Second edition, (2010). Google Scholar

[21]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis,, Second edition, (1980). Google Scholar

[22]

E. B. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids,, Philos. Mag. A, 73 (1996), 1529. Google Scholar

[23]

J. Z. Yang and W. E, Generalized Cauchy-Born rules for elastic deformation of sheets, plates, and rods: Derivation of continuum models from atomistic models,, Phys. Rev. B, 74 (2006). Google Scholar

show all references

References:
[1]

M. Arroyo and T. Belytschko, Nonlinear mechanical response and rippling of thick multiwalled Carbon nanotubes,, Phys. Rev. Lett., 91 (2003). Google Scholar

[2]

M. Arroyo and T. Belytschko, Finite element methods for the nonlinear mechanics of crystalline sheets and nanotubes,, Int. J. Numer. Methods Eng., 59 (2004), 419. doi: 10.1002/nme.944. Google Scholar

[3]

X. Blanc, C. Le Bris and P.-L. Lions, From molecular models to continuum mechanics,, Arch. Ration. Mech. Anal., 164 (2002), 341. doi: 10.1007/s00205-002-0218-5. Google Scholar

[4]

M. Born, Thermodynamics of crystals and melting,, J. Chem. Phys., 7 (1939), 591. Google Scholar

[5]

A. Braides, G. Dal Maso and A. Garroni, Variational formulation of softening phenomena in fracture mechanics: The one-dimensional case,, Arch. Ration. Mech. Anal., 146 (1999), 23. doi: 10.1007/s002050050135. Google Scholar

[6]

E. Cancès and M. Lewin, The dielectric permittivity of crystals in the reduced Hartree-Fock approximation,, Arch. Ration. Mech. Anal., 197 (2010), 139. doi: 10.1007/s00205-009-0275-0. Google Scholar

[7]

E. Cancès and G. Stoltz, A mathematical formulation of the random phase approximation for crystals,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 887. doi: 10.1016/j.anihpc.2012.05.004. Google Scholar

[8]

A.-L. Cauchy, Sur l'equilibre et le mouvement d'un système de points materiels sollicités par forces d'attraction ou de répulsion mutuelle,, Ex. de Math., 3 (1828), 277. Google Scholar

[9]

A.-L. Cauchy, De la pression on tension dans un système de points matériels,, Ex. de Math., 3 (1828), 253. Google Scholar

[10]

S. Conti, G. Dolzmann, B. Kirchheim and S. Müller, Sufficient conditions for the validity of the Cauchy-Born rule close to $SO(n)$,, J. Eur. Math. Soc., 8 (2006), 515. doi: 10.4171/JEMS/65. Google Scholar

[11]

W. E and J. Lu, The electronic structure of smoothly deformed crystals: Wannier functions and the Cauchy-Born rule,, Arch. Ration. Mech. Anal., 199 (2011), 407. doi: 10.1007/s00205-010-0339-1. Google Scholar

[12]

W. E and J. Lu, Stability and the continuum limit of the spin-polarized Thomas-Fermi-Dirac-von Weizsacker model,, J. Math. Phys., 53 (2012). Google Scholar

[13]

W. E and J. Lu, The Kohn-Sham equation for deformed crystals,, Mem. Amer. Math. Soc., 221 (2013). doi: 10.1090/S0065-9266-2012-00659-9. Google Scholar

[14]

W. E, J. Lu and X. Yang, Effective Maxwell equations from time-dependent density functional theory,, Acta Math. Sin. (Eng. Ser.), 27 (2011), 339. doi: 10.1007/s10114-011-0555-0. Google Scholar

[15]

W. E and P. B. Ming, Cauchy-Born rule and the stability of crystalline solids: Static problems,, Arch. Ration. Mech. Anal., 183 (2007), 241. doi: 10.1007/s00205-006-0031-7. Google Scholar

[16]

G. Friesecke and F. Theil, Validity and failure of the Cauchy-Born hypothesis in a two-dimensional mass-spring lattice,, J. Nonlinear Sci., 12 (2002), 445. doi: 10.1007/s00332-002-0495-z. Google Scholar

[17]

P. Hohenberg and W. Kohn, Inhomogeneous electron gas,, Phys. Rev. (2), 136 (1964). doi: 10.1103/PhysRev.136.B864. Google Scholar

[18]

W. Kohn and L. Sham, Self-consistent equations including exchange and correlation effects,, Phys. Rev., 140 (1965). doi: 10.1103/PhysRev.140.A1133. Google Scholar

[19]

F. A. Lindemann, Uber die Berechnung Molecular Eigenfrequnzen,, Physik. Z., 11 (1910), 609. Google Scholar

[20]

M. P. Marder, Condensed Matter Physics,, Second edition, (2010). Google Scholar

[21]

M. Reed and B. Simon, Methods of Modern Mathematical Physics. I. Functional Analysis,, Second edition, (1980). Google Scholar

[22]

E. B. Tadmor, M. Ortiz and R. Phillips, Quasicontinuum analysis of defects in solids,, Philos. Mag. A, 73 (1996), 1529. Google Scholar

[23]

J. Z. Yang and W. E, Generalized Cauchy-Born rules for elastic deformation of sheets, plates, and rods: Derivation of continuum models from atomistic models,, Phys. Rev. B, 74 (2006). Google Scholar

[1]

Kirill D. Cherednichenko, Alexander V. Kiselev, Luis O. Silva. Functional model for extensions of symmetric operators and applications to scattering theory. Networks & Heterogeneous Media, 2018, 13 (2) : 191-215. doi: 10.3934/nhm.2018009

[2]

Miroslav Grmela, Michal Pavelka. Landau damping in the multiscale Vlasov theory. Kinetic & Related Models, 2018, 11 (3) : 521-545. doi: 10.3934/krm.2018023

[3]

Jishan Fan, Tohru Ozawa. Global Cauchy problem of an ideal density-dependent MHD-$\alpha$ model. Conference Publications, 2011, 2011 (Special) : 400-409. doi: 10.3934/proc.2011.2011.400

[4]

Dinh-Liem Nguyen. The factorization method for the Drude-Born-Fedorov model for periodic chiral structures. Inverse Problems & Imaging, 2016, 10 (2) : 519-547. doi: 10.3934/ipi.2016010

[5]

Julian Braun, Bernd Schmidt. On the passage from atomistic systems to nonlinear elasticity theory for general multi-body potentials with p-growth. Networks & Heterogeneous Media, 2013, 8 (4) : 879-912. doi: 10.3934/nhm.2013.8.879

[6]

Nicola Bellomo, Abdelghani Bellouquid, Juanjo Nieto, Juan Soler. On the multiscale modeling of vehicular traffic: From kinetic to hydrodynamics. Discrete & Continuous Dynamical Systems - B, 2014, 19 (7) : 1869-1888. doi: 10.3934/dcdsb.2014.19.1869

[7]

Michele Carriero, Antonio Leaci, Franco Tomarelli. Uniform density estimates for Blake & Zisserman functional. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1129-1150. doi: 10.3934/dcds.2011.31.1129

[8]

Ariosto Silva, Alexander R. A. Anderson, Robert Gatenby. A multiscale model of the bone marrow and hematopoiesis. Mathematical Biosciences & Engineering, 2011, 8 (2) : 643-658. doi: 10.3934/mbe.2011.8.643

[9]

Eric Cancès, Claude Le Bris. Convergence to equilibrium of a multiscale model for suspensions. Discrete & Continuous Dynamical Systems - B, 2006, 6 (3) : 449-470. doi: 10.3934/dcdsb.2006.6.449

[10]

Jingzhi Tie, Qing Zhang. An optimal mean-reversion trading rule under a Markov chain model. Mathematical Control & Related Fields, 2016, 6 (3) : 467-488. doi: 10.3934/mcrf.2016012

[11]

Frederik Riis Mikkelsen. A model based rule for selecting spiking thresholds in neuron models. Mathematical Biosciences & Engineering, 2016, 13 (3) : 569-578. doi: 10.3934/mbe.2016008

[12]

Zhan Chen, Yuting Zou. A multiscale model for heterogeneous tumor spheroid in vitro. Mathematical Biosciences & Engineering, 2018, 15 (2) : 361-392. doi: 10.3934/mbe.2018016

[13]

Xavier Blanc, Claude Le Bris, Frédéric Legoll, Tony Lelièvre. Beyond multiscale and multiphysics: Multimaths for model coupling. Networks & Heterogeneous Media, 2010, 5 (3) : 423-460. doi: 10.3934/nhm.2010.5.423

[14]

Yuanshi Wang, Donald L. DeAngelis. A mutualism-parasitism system modeling host and parasite with mutualism at low density. Mathematical Biosciences & Engineering, 2012, 9 (2) : 431-444. doi: 10.3934/mbe.2012.9.431

[15]

Quansen Jiu, Zhouping Xin. The Cauchy problem for 1D compressible flows with density-dependent viscosity coefficients. Kinetic & Related Models, 2008, 1 (2) : 313-330. doi: 10.3934/krm.2008.1.313

[16]

Georg Hetzer. Global existence for a functional reaction-diffusion problem from climate modeling. Conference Publications, 2011, 2011 (Special) : 660-671. doi: 10.3934/proc.2011.2011.660

[17]

Marco Scianna, Luca Munaron. Multiscale model of tumor-derived capillary-like network formation. Networks & Heterogeneous Media, 2011, 6 (4) : 597-624. doi: 10.3934/nhm.2011.6.597

[18]

Christian Engwer, Markus Knappitsch, Christina Surulescu. A multiscale model for glioma spread including cell-tissue interactions and proliferation. Mathematical Biosciences & Engineering, 2016, 13 (2) : 443-460. doi: 10.3934/mbe.2015011

[19]

Gülnihal Meral, Christian Stinner, Christina Surulescu. On a multiscale model involving cell contractivity and its effects on tumor invasion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 189-213. doi: 10.3934/dcdsb.2015.20.189

[20]

Eric Chung, Yalchin Efendiev, Ke Shi, Shuai Ye. A multiscale model reduction method for nonlinear monotone elliptic equations in heterogeneous media. Networks & Heterogeneous Media, 2017, 12 (4) : 619-642. doi: 10.3934/nhm.2017025

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (23)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]