November  2014, 34(11): 4765-4780. doi: 10.3934/dcds.2014.34.4765

The structure of limit sets for $\mathbb{Z}^d$ actions

1. 

Department of Mathematics, Baylor University, Waco, TX 76798-7328, United States, United States

Received  February 2013 Revised  February 2014 Published  May 2014

Central to the study of $\mathbb{Z}$ actions on compact metric spaces is the $\omega$-limit set, the set of all limit points of a forward orbit. A closed set $K$ is internally chain transitive provided for every $x,y\in K$ there is an $\epsilon$-pseudo-orbit of points from $K$ that starts with $x$ and ends with $y$. It is known in several settings that the property of internal chain transitivity characterizes $\omega$-limit sets. In this paper, we consider actions of $\mathbb{Z}^d$ on compact metric spaces. We give a general definition for shadowing and limit sets in this setting. We characterize limit sets in terms of a more general internal property which we call internal mesh transitivity.
Citation: Jonathan Meddaugh, Brian E. Raines. The structure of limit sets for $\mathbb{Z}^d$ actions. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4765-4780. doi: 10.3934/dcds.2014.34.4765
References:
[1]

F. Balibrea and C. La Paz, A characterization of the $\omega$-limit sets of interval maps,, Acta Math. Hungar., 88 (2000), 291. doi: 10.1023/A:1026775906693. Google Scholar

[2]

A. D. Barwell, C. Good, R. Knight and B. E. Raines, A characterization of $\omega$-limit sets in shift spaces,, Ergodic Theory Dynam. Systems, 30 (2010), 21. doi: 10.1017/S0143385708001089. Google Scholar

[3]

A. D. Barwell, A characterization of $\omega$-limit sets of piecewise monotone maps of the interval,, Fund. Math., 207 (2010), 161. doi: 10.4064/fm207-2-4. Google Scholar

[4]

A. D. Barwell, C. Good, P. Oprocha and B. E. Raines, Characterizations of $\omega$-limit sets of topologically hyperbolic spaces,, Discrete Contin. Dyn. Syst., 33 (2013), 1819. doi: 10.3934/dcds.2013.33.1819. Google Scholar

[5]

W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,, American Mathematical Society, (1955). Google Scholar

[6]

M. W. Hirsch, H.L. Smith and X. Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems,, J. Dynam. Differential Equations, 13 (2001), 107. doi: 10.1023/A:1009044515567. Google Scholar

[7]

M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems,, Invent. Math., 176 (2009), 131. doi: 10.1007/s00222-008-0161-7. Google Scholar

[8]

M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type,, Ann. of Math. (2), 171 (2010), 2011. doi: 10.4007/annals.2010.171.2011. Google Scholar

[9]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Cambridge University Press, (1995). Google Scholar

[10]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511626302. Google Scholar

[11]

P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems,, Discrete Contin. Dyn. Syst., 20 (2008), 1039. doi: 10.3934/dcds.2008.20.1039. Google Scholar

[12]

P. Oprocha, Shadowing in multi-dimensional shift spaces,, Colloq. Math., 110 (2008), 451. doi: 10.4064/cm110-2-8. Google Scholar

[13]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982). Google Scholar

show all references

References:
[1]

F. Balibrea and C. La Paz, A characterization of the $\omega$-limit sets of interval maps,, Acta Math. Hungar., 88 (2000), 291. doi: 10.1023/A:1026775906693. Google Scholar

[2]

A. D. Barwell, C. Good, R. Knight and B. E. Raines, A characterization of $\omega$-limit sets in shift spaces,, Ergodic Theory Dynam. Systems, 30 (2010), 21. doi: 10.1017/S0143385708001089. Google Scholar

[3]

A. D. Barwell, A characterization of $\omega$-limit sets of piecewise monotone maps of the interval,, Fund. Math., 207 (2010), 161. doi: 10.4064/fm207-2-4. Google Scholar

[4]

A. D. Barwell, C. Good, P. Oprocha and B. E. Raines, Characterizations of $\omega$-limit sets of topologically hyperbolic spaces,, Discrete Contin. Dyn. Syst., 33 (2013), 1819. doi: 10.3934/dcds.2013.33.1819. Google Scholar

[5]

W. H. Gottschalk and G. A. Hedlund, Topological Dynamics,, American Mathematical Society, (1955). Google Scholar

[6]

M. W. Hirsch, H.L. Smith and X. Q. Zhao, Chain transitivity, attractivity, and strong repellors for semidynamical systems,, J. Dynam. Differential Equations, 13 (2001), 107. doi: 10.1023/A:1009044515567. Google Scholar

[7]

M. Hochman, On the dynamics and recursive properties of multidimensional symbolic systems,, Invent. Math., 176 (2009), 131. doi: 10.1007/s00222-008-0161-7. Google Scholar

[8]

M. Hochman and T. Meyerovitch, A characterization of the entropies of multidimensional shifts of finite type,, Ann. of Math. (2), 171 (2010), 2011. doi: 10.4007/annals.2010.171.2011. Google Scholar

[9]

A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems,, Cambridge University Press, (1995). Google Scholar

[10]

D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding,, Cambridge University Press, (1995). doi: 10.1017/CBO9780511626302. Google Scholar

[11]

P. Oprocha, Chain recurrence in multidimensional time discrete dynamical systems,, Discrete Contin. Dyn. Syst., 20 (2008), 1039. doi: 10.3934/dcds.2008.20.1039. Google Scholar

[12]

P. Oprocha, Shadowing in multi-dimensional shift spaces,, Colloq. Math., 110 (2008), 451. doi: 10.4064/cm110-2-8. Google Scholar

[13]

P. Walters, An Introduction to Ergodic Theory,, Graduate Texts in Mathematics, (1982). Google Scholar

[1]

Bruce Kitchens, Michał Misiurewicz. Omega-limit sets for spiral maps. Discrete & Continuous Dynamical Systems - A, 2010, 27 (2) : 787-798. doi: 10.3934/dcds.2010.27.787

[2]

Zheng Yin, Ercai Chen. The conditional variational principle for maps with the pseudo-orbit tracing property. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 463-481. doi: 10.3934/dcds.2019019

[3]

Changjing Zhuge, Xiaojuan Sun, Jinzhi Lei. On positive solutions and the Omega limit set for a class of delay differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (9) : 2487-2503. doi: 10.3934/dcdsb.2013.18.2487

[4]

Flavio Abdenur, Lorenzo J. Díaz. Pseudo-orbit shadowing in the $C^1$ topology. Discrete & Continuous Dynamical Systems - A, 2007, 17 (2) : 223-245. doi: 10.3934/dcds.2007.17.223

[5]

Carlos Arnoldo Morales, M. J. Pacifico. Lyapunov stability of $\omega$-limit sets. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 671-674. doi: 10.3934/dcds.2002.8.671

[6]

Fang Zhang, Yunhua Zhou. On the limit quasi-shadowing property. Discrete & Continuous Dynamical Systems - A, 2017, 37 (5) : 2861-2879. doi: 10.3934/dcds.2017123

[7]

Andrew D. Barwell, Chris Good, Piotr Oprocha, Brian E. Raines. Characterizations of $\omega$-limit sets in topologically hyperbolic systems. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1819-1833. doi: 10.3934/dcds.2013.33.1819

[8]

Hongyong Cui, Peter E. Kloeden, Meihua Yang. Forward omega limit sets of nonautonomous dynamical systems. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-12. doi: 10.3934/dcdss.2020065

[9]

Lidong Wang, Hui Wang, Guifeng Huang. Minimal sets and $\omega$-chaos in expansive systems with weak specification property. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 1231-1238. doi: 10.3934/dcds.2015.35.1231

[10]

José S. Cánovas. Topological sequence entropy of $\omega$–limit sets of interval maps. Discrete & Continuous Dynamical Systems - A, 2001, 7 (4) : 781-786. doi: 10.3934/dcds.2001.7.781

[11]

Yiming Ding. Renormalization and $\alpha$-limit set for expanding Lorenz maps. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 979-999. doi: 10.3934/dcds.2011.29.979

[12]

Francisco Balibrea, J.L. García Guirao, J.I. Muñoz Casado. A triangular map on $I^{2}$ whose $\omega$-limit sets are all compact intervals of $\{0\}\times I$. Discrete & Continuous Dynamical Systems - A, 2002, 8 (4) : 983-994. doi: 10.3934/dcds.2002.8.983

[13]

Liangwei Wang, Jingxue Yin, Chunhua Jin. $\omega$-limit sets for porous medium equation with initial data in some weighted spaces. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 223-236. doi: 10.3934/dcdsb.2013.18.223

[14]

José Ginés Espín Buendía, Víctor Jiménez Lopéz. A topological characterization of the $\omega$-limit sets of analytic vector fields on open subsets of the sphere. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1143-1173. doi: 10.3934/dcdsb.2019010

[15]

Alexander Blokh, Michał Misiurewicz. Dense set of negative Schwarzian maps whose critical points have minimal limit sets. Discrete & Continuous Dynamical Systems - A, 1998, 4 (1) : 141-158. doi: 10.3934/dcds.1998.4.141

[16]

Tatiane C. Batista, Juliano S. Gonschorowski, Fábio A. Tal. Density of the set of endomorphisms with a maximizing measure supported on a periodic orbit. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3315-3326. doi: 10.3934/dcds.2015.35.3315

[17]

Jaroslav Smítal, Marta Štefánková. Omega-chaos almost everywhere. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1323-1327. doi: 10.3934/dcds.2003.9.1323

[18]

Piotr Oprocha, Xinxing Wu. On averaged tracing of periodic average pseudo orbits. Discrete & Continuous Dynamical Systems - A, 2017, 37 (9) : 4943-4957. doi: 10.3934/dcds.2017212

[19]

C. R. Chen, S. J. Li. Semicontinuity of the solution set map to a set-valued weak vector variational inequality. Journal of Industrial & Management Optimization, 2007, 3 (3) : 519-528. doi: 10.3934/jimo.2007.3.519

[20]

Kay Kirkpatrick. Rigorous derivation of the Landau equation in the weak coupling limit. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1895-1916. doi: 10.3934/cpaa.2009.8.1895

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (1)

Other articles
by authors

[Back to Top]