# American Institute of Mathematical Sciences

November  2014, 34(11): 4671-4688. doi: 10.3934/dcds.2014.34.4671

## Supercritical problems in domains with thin toroidal holes

 1 Departamento de Matemática, Pontificia Universidad Catóica de Chile, Avenida Vicuña Mackenna 4860, Santiago, Chile 2 Dipartimento SBAI, Università di Roma "La Sapienza", via Antonio Scarpa 16, 00161 Roma

Received  September 2013 Revised  December 2013 Published  May 2014

In this paper we study the Lane-Emden-Fowler equation (P)_ \epsilon \quad \left\{ \begin{aligned} &\Delta u+|u|^{q-2}u=0\ &\hbox{in}\ \mathcal D_ \epsilon,\\ & u=0\ &\hbox{on}\ \partial\mathcal D_ \epsilon.\\ \end{aligned}\right. Here $\mathcal D_ \epsilon=\mathcal D\setminus \left\{x\in \mathcal D\ :\ \mathrm{dist}(x,\Gamma_l)\le \epsilon \right\}$, $\mathcal D$ is a smooth bounded domain in $\mathbb{R}^N$, $\Gamma_l$ is an $l-$dimensional closed manifold such that $\Gamma_l\subset\mathcal D$ with $1\le l\le N-3$ and $q={2(N-l)\over N-l-2} .$ We prove that, under some symmetry assumptions, the number of sign changing solutions to $(P)_ \epsilon$ increases as $\epsilon$ goes to zero.
Citation: Seunghyeok Kim, Angela Pistoia. Supercritical problems in domains with thin toroidal holes. Discrete & Continuous Dynamical Systems - A, 2014, 34 (11) : 4671-4688. doi: 10.3934/dcds.2014.34.4671
##### References:
 [1] N. Ackermann, M. Clápp and A. Pistoia, Boundary clustered layers near the higher critical exponents,, J. Differential Equations, 254 (2013), 4168. doi: 10.1016/j.jde.2013.02.015. Google Scholar [2] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain,, Comm. Pure Appl. Math., 41 (1988), 253. doi: 10.1002/cpa.3160410302. Google Scholar [3] A. Bahri, Y.-Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity,, Calc. Var. Partial Diff. Eq., 3 (1995), 67. doi: 10.1007/BF01190892. Google Scholar [4] T. Bartsch, A. M. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth,, Calc. Var. Partial Diff. Eq., 26 (2006), 265. doi: 10.1007/s00526-006-0004-6. Google Scholar [5] M. Clapp, J. Faya and A. Pistoia, Nonexistence and multiplicity of solutions to elliptic problems with supercritical exponents,, Calc. Var. Partial Diff. Eq., 48 (2013), 611. doi: 10.1007/s00526-012-0564-6. Google Scholar [6] M. Clapp, J. Faya and A. Pistoia, Positive solutions to a supercritical elliptic problem which concentrate along a think spherical hole,, J. Anal. Math., (). Google Scholar [7] J. M. Coron, Topologie et cas limite des injections de sobolev,, C. R. Acad. Sci. Paris Ser. I Math., 299 (1984), 209. Google Scholar [8] M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem,, Calc. Var. Partial Diff. Eq., 16 (2003), 113. doi: 10.1007/s005260100142. Google Scholar [9] M. del Pino, M. Musso and F. Pacard, Bubbling along boundary geodesics near the second critical exponent,, J. Eur. Math. Soc., 12 (2010), 1553. doi: 10.4171/JEMS/241. Google Scholar [10] M. del Pino and J. Wei, Supercritical elliptic problems in domains with small holes,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507. doi: 10.1016/j.anihpc.2006.03.001. Google Scholar [11] E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes,, Manuscripta Math, 123 (2007), 493. doi: 10.1007/s00229-007-0110-6. Google Scholar [12] Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains,, Commun. Partial Differ. Equ., 35 (2010), 1419. doi: 10.1080/03605302.2010.490286. Google Scholar [13] S. Kim and A. Pistoia, Boundary towers of layers for some supercritical problems,, J. Differential Equations, 255 (2013), 2302. doi: 10.1016/j.jde.2013.06.017. Google Scholar [14] S. Kim and A. Pistoia, Clustered boundary layer sign changing solutions for a supercritical problem,, J. London Math. Soc., 88 (2013), 227. doi: 10.1112/jlms/jdt006. Google Scholar [15] J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations,, Comm. Pure Appl. Math., 28 (1975), 567. doi: 10.1002/cpa.3160280502. Google Scholar [16] M. Musso and A. Pistoia, Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains,, J. Math. Pures Appl., 86 (2006), 510. doi: 10.1016/j.matpur.2006.10.006. Google Scholar [17] M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains,, J. Math. Pures Appl., 93 (2010), 1. doi: 10.1016/j.matpur.2009.08.001. Google Scholar [18] D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains,, J. Func. Anal., 114 (1993), 97. doi: 10.1006/jfan.1993.1064. Google Scholar [19] D. Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity,, Diff. Int. Equat., 8 (1995), 577. Google Scholar [20] S. I. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36. Google Scholar [21] A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325. doi: 10.1016/j.anihpc.2006.03.002. Google Scholar [22] S. Yan and J. Wei, Infinitely many positive solutions for an elliptic problem with critical or supercritical growth,, J. Math Pures Appl., 96 (2011), 307. doi: 10.1016/j.matpur.2011.01.006. Google Scholar

show all references

##### References:
 [1] N. Ackermann, M. Clápp and A. Pistoia, Boundary clustered layers near the higher critical exponents,, J. Differential Equations, 254 (2013), 4168. doi: 10.1016/j.jde.2013.02.015. Google Scholar [2] A. Bahri and J. M. Coron, On a nonlinear elliptic equation involving the critical Sobolev exponent: the effect of the topology of the domain,, Comm. Pure Appl. Math., 41 (1988), 253. doi: 10.1002/cpa.3160410302. Google Scholar [3] A. Bahri, Y.-Y. Li and O. Rey, On a variational problem with lack of compactness: The topological effect of the critical points at infinity,, Calc. Var. Partial Diff. Eq., 3 (1995), 67. doi: 10.1007/BF01190892. Google Scholar [4] T. Bartsch, A. M. Micheletti and A. Pistoia, On the existence and the profile of nodal solutions of elliptic equations involving critical growth,, Calc. Var. Partial Diff. Eq., 26 (2006), 265. doi: 10.1007/s00526-006-0004-6. Google Scholar [5] M. Clapp, J. Faya and A. Pistoia, Nonexistence and multiplicity of solutions to elliptic problems with supercritical exponents,, Calc. Var. Partial Diff. Eq., 48 (2013), 611. doi: 10.1007/s00526-012-0564-6. Google Scholar [6] M. Clapp, J. Faya and A. Pistoia, Positive solutions to a supercritical elliptic problem which concentrate along a think spherical hole,, J. Anal. Math., (). Google Scholar [7] J. M. Coron, Topologie et cas limite des injections de sobolev,, C. R. Acad. Sci. Paris Ser. I Math., 299 (1984), 209. Google Scholar [8] M. del Pino, P. Felmer and M. Musso, Two-bubble solutions in the super-critical Bahri-Coron's problem,, Calc. Var. Partial Diff. Eq., 16 (2003), 113. doi: 10.1007/s005260100142. Google Scholar [9] M. del Pino, M. Musso and F. Pacard, Bubbling along boundary geodesics near the second critical exponent,, J. Eur. Math. Soc., 12 (2010), 1553. doi: 10.4171/JEMS/241. Google Scholar [10] M. del Pino and J. Wei, Supercritical elliptic problems in domains with small holes,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 507. doi: 10.1016/j.anihpc.2006.03.001. Google Scholar [11] E. N. Dancer and J. Wei, Sign-changing solutions for supercritical elliptic problems in domains with small holes,, Manuscripta Math, 123 (2007), 493. doi: 10.1007/s00229-007-0110-6. Google Scholar [12] Y. Ge, M. Musso and A. Pistoia, Sign changing tower of bubbles for an elliptic problem at the critical exponent in pierced non-symmetric domains,, Commun. Partial Differ. Equ., 35 (2010), 1419. doi: 10.1080/03605302.2010.490286. Google Scholar [13] S. Kim and A. Pistoia, Boundary towers of layers for some supercritical problems,, J. Differential Equations, 255 (2013), 2302. doi: 10.1016/j.jde.2013.06.017. Google Scholar [14] S. Kim and A. Pistoia, Clustered boundary layer sign changing solutions for a supercritical problem,, J. London Math. Soc., 88 (2013), 227. doi: 10.1112/jlms/jdt006. Google Scholar [15] J. Kazdan and F. Warner, Remarks on some quasilinear elliptic equations,, Comm. Pure Appl. Math., 28 (1975), 567. doi: 10.1002/cpa.3160280502. Google Scholar [16] M. Musso and A. Pistoia, Sign changing solutions to a nonlinear elliptic problem involving the critical Sobolev exponent in pierced domains,, J. Math. Pures Appl., 86 (2006), 510. doi: 10.1016/j.matpur.2006.10.006. Google Scholar [17] M. Musso and A. Pistoia, Tower of bubbles for almost critical problems in general domains,, J. Math. Pures Appl., 93 (2010), 1. doi: 10.1016/j.matpur.2009.08.001. Google Scholar [18] D. Passaseo, Nonexistence results for elliptic problems with supercritical nonlinearity in nontrivial domains,, J. Func. Anal., 114 (1993), 97. doi: 10.1006/jfan.1993.1064. Google Scholar [19] D. Passaseo, New nonexistence results for elliptic equations with supercritical nonlinearity,, Diff. Int. Equat., 8 (1995), 577. Google Scholar [20] S. I. Pohožaev, Eigenfunctions of the equation $\Delta u + \lambda f(u) = 0$,, Dokl. Akad. Nauk SSSR, 165 (1965), 36. Google Scholar [21] A. Pistoia and T. Weth, Sign changing bubble tower solutions in a slightly subcritical semilinear Dirichlet problem,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 24 (2007), 325. doi: 10.1016/j.anihpc.2006.03.002. Google Scholar [22] S. Yan and J. Wei, Infinitely many positive solutions for an elliptic problem with critical or supercritical growth,, J. Math Pures Appl., 96 (2011), 307. doi: 10.1016/j.matpur.2011.01.006. Google Scholar
 [1] Juncheng Wei, Jun Yang. Toda system and interior clustering line concentration for a singularly perturbed Neumann problem in two dimensional domain. Discrete & Continuous Dynamical Systems - A, 2008, 22 (3) : 465-508. doi: 10.3934/dcds.2008.22.465 [2] Randa Ben Mahmoud, Hichem Chtioui. Prescribing the scalar curvature problem on higher-dimensional manifolds. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1857-1879. doi: 10.3934/dcds.2012.32.1857 [3] Zhongyuan Liu. Concentration of solutions for the fractional Nirenberg problem. Communications on Pure & Applied Analysis, 2016, 15 (2) : 563-576. doi: 10.3934/cpaa.2016.15.563 [4] Shuangjie Peng, Jing Zhou. Concentration of solutions for a Paneitz type problem. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 1055-1072. doi: 10.3934/dcds.2010.26.1055 [5] Sijia Zhong, Daoyuan Fang. $L^2$-concentration phenomenon for Zakharov system below energy norm II. Communications on Pure & Applied Analysis, 2009, 8 (3) : 1117-1132. doi: 10.3934/cpaa.2009.8.1117 [6] Jun Wang, Lu Xiao. Existence and concentration of solutions for a Kirchhoff type problem with potentials. Discrete & Continuous Dynamical Systems - A, 2016, 36 (12) : 7137-7168. doi: 10.3934/dcds.2016111 [7] Yansheng Zhong, Yongqing Li. On a p-Laplacian eigenvalue problem with supercritical exponent. Communications on Pure & Applied Analysis, 2019, 18 (1) : 227-236. doi: 10.3934/cpaa.2019012 [8] Francesca Colasuonno, Benedetta Noris. A p-Laplacian supercritical Neumann problem. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3025-3057. doi: 10.3934/dcds.2017130 [9] Liping Wang, Juncheng Wei. Infinite multiplicity for an inhomogeneous supercritical problem in entire space. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1243-1257. doi: 10.3934/cpaa.2013.12.1243 [10] M. Ben Ayed, Kamal Ould Bouh. Nonexistence results of sign-changing solutions to a supercritical nonlinear problem. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1057-1075. doi: 10.3934/cpaa.2008.7.1057 [11] Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761 [12] José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete & Continuous Dynamical Systems - A, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138 [13] Jian Zhang, Shihui Zhu, Xiaoguang Li. Rate of $L^2$-concentration of the blow-up solution for critical nonlinear Schrödinger equation with potential. Mathematical Control & Related Fields, 2011, 1 (1) : 119-127. doi: 10.3934/mcrf.2011.1.119 [14] Myeongju Chae, Sunggeum Hong, Sanghyuk Lee. Mass concentration for the $L^2$-critical nonlinear Schrödinger equations of higher orders. Discrete & Continuous Dynamical Systems - A, 2011, 29 (3) : 909-928. doi: 10.3934/dcds.2011.29.909 [15] Eleonora Bardelli, Andrea Carlo Giuseppe Mennucci. Probability measures on infinite-dimensional Stiefel manifolds. Journal of Geometric Mechanics, 2017, 9 (3) : 291-316. doi: 10.3934/jgm.2017012 [16] Paolo Maria Mariano. Line defect evolution in finite-dimensional manifolds. Discrete & Continuous Dynamical Systems - B, 2012, 17 (2) : 575-596. doi: 10.3934/dcdsb.2012.17.575 [17] Mengyao Ding, Sining Zheng. $L^γ$-measure criteria for boundedness in a quasilinear parabolic-elliptic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 2971-2988. doi: 10.3934/dcdsb.2018295 [18] Mengyao Ding, Xiangdong Zhao. $L^\sigma$-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller-Segel system with supercritical sensitivity. Discrete & Continuous Dynamical Systems - B, 2019, 24 (10) : 5297-5315. doi: 10.3934/dcdsb.2019059 [19] Ruihong Ji, Yongfu Wang. Mass concentration phenomenon to the 2D Cauchy problem of the compressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1117-1133. doi: 10.3934/dcds.2019047 [20] Lorena Bociu, Petronela Radu. Existence of weak solutions to the Cauchy problem of a semilinear wave equation with supercritical interior source and damping. Conference Publications, 2009, 2009 (Special) : 60-71. doi: 10.3934/proc.2009.2009.60

2018 Impact Factor: 1.143