February  2014, 34(2): 421-436. doi: 10.3934/dcds.2014.34.421

On the existence and asymptotic stability of solutions for unsteady mixing-layer models

1. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Calle Tarfia, s/n, 41012, Sevilla, Spain, Spain, Spain

Received  November 2012 Revised  May 2013 Published  August 2013

We introduce in this paper some elements for the mathematical analysis of turbulence models for oceanic surface mixing layers. We consider Richardson-number based vertical eddy diffusion models. We prove the existence of unsteady solutions if the initial condition is close to an equilibrium, via the inverse function theorem in Banach spaces. We use this result to prove the non-linear asymptotic stability of equilibrium solutions.
Citation: Tómas Chacón-Rebollo, Macarena Gómez-Mármol, Samuele Rubino. On the existence and asymptotic stability of solutions for unsteady mixing-layer models. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 421-436. doi: 10.3934/dcds.2014.34.421
References:
[1]

A.-C. Bennis, T. Chacón-Rebollo, M. Gómez Mármol and R. Lewandowski, Numerical modelling of algebraic closure models of oceanic turbulent mixing layers,, M2AN Math. Model. Numer. Anal., 44 (2010), 1255. doi: 10.1051/m2an/2010025. Google Scholar

[2]

A.-C. Bennis, T. Chacón-Rebollo, M. Gómez Mármol and R. Lewandowski, Stability of some turbulent vertical models for the ocean mixing boundary layer,, Appl. Math. Lett., 21 (2008), 128. doi: 10.1016/j.aml.2007.02.016. Google Scholar

[3]

H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations,", Universitext, (2011). doi: 10.1007/978-0-387-70914-7. Google Scholar

[4]

T. Chacón-Rebollo, M. Gómez Mármol and S. Rubino, Analysis of numerical stability of algebraic oceanic turbulent mixing layer models,, submitted to Appl. Math. Model., (2013). Google Scholar

[5]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 251 (1982). doi: 10.1007/978-1-4613-8159-4. Google Scholar

[6]

A. Defant, Schichtung und zirkulation des atlantischen ozeans,, (German) Wiss. Ergebn.: Deutsch. Atlant. Exp. Forsch., 6 (1936), 289. Google Scholar

[7]

L. C. Evans, "Partial Differential Equations,", $2^{nd}$ edition, 19 (2010). Google Scholar

[8]

P. R. Gent, The heat budget of the TOGA-COARE domain in an ocean model,, J. Geophys. Res., 96 (1991), 3323. doi: 10.1029/90JC01677. Google Scholar

[9]

H. Goosse, E. Deleersnijder, T. Fichefet and M. H. England, Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing,, J. Geophys. Res., 104 (1999), 13681. doi: 10.1029/1999JC900099. Google Scholar

[10]

Z. Kowalik and T. S. Murty, "Numerical Modeling of Ocean Dynamics,", Advanced Series on Ocean Engineering, (1993). doi: 10.1142/1970. Google Scholar

[11]

O. A. Ladyženskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1968). Google Scholar

[12]

M. Lesieur, "Turbulence in Fluids,", $3^{rd}$ edition, 40 (1997). doi: 10.1007/978-94-010-9018-6. Google Scholar

[13]

R. Lewandowski, "Analyse Mathématique et Océanographie,", (French) Masson, (1997). Google Scholar

[14]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", (French) Dunod; Gauthier-Villars, (1969). Google Scholar

[15]

R. C. Pacanowski and S. G. H. Philander, Parametrization of vertical mixing in numerical models of the tropical oceans,, J. Phys. Oceanogr., 11 (1981), 1443. Google Scholar

[16]

J. Pedloski, "Geophysical Fluid Dynamics,", $2^{nd}$ edition, (1987). Google Scholar

[17]

S. Rubino, Numerical modelling of oceanic turbulent mixing layers considering pressure gradient effects,, in, 16 (2011), 229. Google Scholar

[18]

R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations,, Math. Comp., 62 (1994), 445. doi: 10.2307/2153518. Google Scholar

[19]

J. Vialard and P. Delecluse, An ogcm study for the TOGA decade. Part I: Role of salinity in the physics of the western Pacific fresh pool,, J. Phys. Oceanogr., 28 (1998), 1071. Google Scholar

show all references

References:
[1]

A.-C. Bennis, T. Chacón-Rebollo, M. Gómez Mármol and R. Lewandowski, Numerical modelling of algebraic closure models of oceanic turbulent mixing layers,, M2AN Math. Model. Numer. Anal., 44 (2010), 1255. doi: 10.1051/m2an/2010025. Google Scholar

[2]

A.-C. Bennis, T. Chacón-Rebollo, M. Gómez Mármol and R. Lewandowski, Stability of some turbulent vertical models for the ocean mixing boundary layer,, Appl. Math. Lett., 21 (2008), 128. doi: 10.1016/j.aml.2007.02.016. Google Scholar

[3]

H. Brezis, "Functional Analysis, Sobolev Spaces and Partial Differential Equations,", Universitext, (2011). doi: 10.1007/978-0-387-70914-7. Google Scholar

[4]

T. Chacón-Rebollo, M. Gómez Mármol and S. Rubino, Analysis of numerical stability of algebraic oceanic turbulent mixing layer models,, submitted to Appl. Math. Model., (2013). Google Scholar

[5]

S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory,", Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science], 251 (1982). doi: 10.1007/978-1-4613-8159-4. Google Scholar

[6]

A. Defant, Schichtung und zirkulation des atlantischen ozeans,, (German) Wiss. Ergebn.: Deutsch. Atlant. Exp. Forsch., 6 (1936), 289. Google Scholar

[7]

L. C. Evans, "Partial Differential Equations,", $2^{nd}$ edition, 19 (2010). Google Scholar

[8]

P. R. Gent, The heat budget of the TOGA-COARE domain in an ocean model,, J. Geophys. Res., 96 (1991), 3323. doi: 10.1029/90JC01677. Google Scholar

[9]

H. Goosse, E. Deleersnijder, T. Fichefet and M. H. England, Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing,, J. Geophys. Res., 104 (1999), 13681. doi: 10.1029/1999JC900099. Google Scholar

[10]

Z. Kowalik and T. S. Murty, "Numerical Modeling of Ocean Dynamics,", Advanced Series on Ocean Engineering, (1993). doi: 10.1142/1970. Google Scholar

[11]

O. A. Ladyženskaya, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasi-Linear Equations of Parabolic Type,", Translations of Mathematical Monographs, (1968). Google Scholar

[12]

M. Lesieur, "Turbulence in Fluids,", $3^{rd}$ edition, 40 (1997). doi: 10.1007/978-94-010-9018-6. Google Scholar

[13]

R. Lewandowski, "Analyse Mathématique et Océanographie,", (French) Masson, (1997). Google Scholar

[14]

J.-L. Lions, "Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires,", (French) Dunod; Gauthier-Villars, (1969). Google Scholar

[15]

R. C. Pacanowski and S. G. H. Philander, Parametrization of vertical mixing in numerical models of the tropical oceans,, J. Phys. Oceanogr., 11 (1981), 1443. Google Scholar

[16]

J. Pedloski, "Geophysical Fluid Dynamics,", $2^{nd}$ edition, (1987). Google Scholar

[17]

S. Rubino, Numerical modelling of oceanic turbulent mixing layers considering pressure gradient effects,, in, 16 (2011), 229. Google Scholar

[18]

R. Verfürth, A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations,, Math. Comp., 62 (1994), 445. doi: 10.2307/2153518. Google Scholar

[19]

J. Vialard and P. Delecluse, An ogcm study for the TOGA decade. Part I: Role of salinity in the physics of the western Pacific fresh pool,, J. Phys. Oceanogr., 28 (1998), 1071. Google Scholar

[1]

Zhi Lin, Katarína Boďová, Charles R. Doering. Models & measures of mixing & effective diffusion. Discrete & Continuous Dynamical Systems - A, 2010, 28 (1) : 259-274. doi: 10.3934/dcds.2010.28.259

[2]

Fabrizio Colombo, Irene Sabadini, Frank Sommen. The inverse Fueter mapping theorem. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1165-1181. doi: 10.3934/cpaa.2011.10.1165

[3]

Laurent Imbert, Michael J. Jacobson, Jr., Arthur Schmidt. Fast ideal cubing in imaginary quadratic number and function fields. Advances in Mathematics of Communications, 2010, 4 (2) : 237-260. doi: 10.3934/amc.2010.4.237

[4]

Qixuan Wang, Hans G. Othmer. The performance of discrete models of low reynolds number swimmers. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1303-1320. doi: 10.3934/mbe.2015.12.1303

[5]

Ruiliang Zhang, Xavier Bresson, Tony F. Chan, Xue-Cheng Tai. Four color theorem and convex relaxation for image segmentation with any number of regions. Inverse Problems & Imaging, 2013, 7 (3) : 1099-1113. doi: 10.3934/ipi.2013.7.1099

[6]

Qinghua Ma, Zuoliang Xu, Liping Wang. Recovery of the local volatility function using regularization and a gradient projection method. Journal of Industrial & Management Optimization, 2015, 11 (2) : 421-437. doi: 10.3934/jimo.2015.11.421

[7]

Yanfei Wang, Qinghua Ma. A gradient method for regularizing retrieval of aerosol particle size distribution function. Journal of Industrial & Management Optimization, 2009, 5 (1) : 115-126. doi: 10.3934/jimo.2009.5.115

[8]

Zhiming Chen, Chao Liang, Xueshuang Xiang. An anisotropic perfectly matched layer method for Helmholtz scattering problems with discontinuous wave number. Inverse Problems & Imaging, 2013, 7 (3) : 663-678. doi: 10.3934/ipi.2013.7.663

[9]

Raffaele Chiappinelli. Eigenvalues of homogeneous gradient mappings in Hilbert space and the Birkoff-Kellogg theorem. Conference Publications, 2007, 2007 (Special) : 260-268. doi: 10.3934/proc.2007.2007.260

[10]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[11]

Ben Green, Terence Tao, Tamar Ziegler. An inverse theorem for the Gowers $U^{s+1}[N]$-norm. Electronic Research Announcements, 2011, 18: 69-90. doi: 10.3934/era.2011.18.69

[12]

Herbert Egger, Manuel Freiberger, Matthias Schlottbom. On forward and inverse models in fluorescence diffuse optical tomography. Inverse Problems & Imaging, 2010, 4 (3) : 411-427. doi: 10.3934/ipi.2010.4.411

[13]

Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems & Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81

[14]

Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37

[15]

Robert E. Beardmore, Rafael Peña-Miller. Antibiotic cycling versus mixing: The difficulty of using mathematical models to definitively quantify their relative merits. Mathematical Biosciences & Engineering, 2010, 7 (4) : 923-933. doi: 10.3934/mbe.2010.7.923

[16]

Xiaoxue Gong, Ying Xu, Vinay Mahadeo, Tulin Kaman, Johan Larsson, James Glimm. Mesh convergence for turbulent combustion. Discrete & Continuous Dynamical Systems - A, 2016, 36 (8) : 4383-4402. doi: 10.3934/dcds.2016.36.4383

[17]

Andrei Korobeinikov, Philip K. Maini. A Lyapunov function and global properties for SIR and SEIR epidemiological models with nonlinear incidence. Mathematical Biosciences & Engineering, 2004, 1 (1) : 57-60. doi: 10.3934/mbe.2004.1.57

[18]

Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053

[19]

Colin J. Cotter, Michael John Priestley Cullen. Particle relabelling symmetries and Noether's theorem for vertical slice models. Journal of Geometric Mechanics, 2019, 11 (2) : 139-151. doi: 10.3934/jgm.2019007

[20]

Djano Kandaswamy, Thierry Blu, Dimitri Van De Ville. Analytic sensing for multi-layer spherical models with application to EEG source imaging. Inverse Problems & Imaging, 2013, 7 (4) : 1251-1270. doi: 10.3934/ipi.2013.7.1251

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (5)
  • HTML views (0)
  • Cited by (2)

[Back to Top]