October  2014, 34(10): 3985-4017. doi: 10.3934/dcds.2014.34.3985

Analysis and optimal control of some solidification processes

1. 

Departamento de Ciencias Básicas, Universidad del Bío-Bío, Campus Fernando May, Casilla 447, Chillán, Chile

2. 

Departamento de Ecuaciones Diferenciales y Análisis Numérico, Universidad de Sevilla, Aptdo. 1160, 41080 Sevilla, Spain

Received  October 2012 Revised  January 2013 Published  April 2014

In this paper we consider a mathematical model that describes the solidification of a binary alloy. We prove some existence and uniqueness results for a regularized problem, depending on a small parameter $\epsilon$. We also analyze the behavior of the regularized solutions as $\epsilon \to 0$. Then, we consider some associated optimal control problems. We prove existence and optimality results and we present and discuss some iterative methods.
Citation: Roberto C. Cabrales, Gema Camacho, Enrique Fernández-Cara. Analysis and optimal control of some solidification processes. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3985-4017. doi: 10.3934/dcds.2014.34.3985
References:
[1]

R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975). Google Scholar

[2]

W. J. Boettinger, J. A. Warren, C. Beckermann and A. Karma, Phase-field simulation of solidification,, Annual Review of Materials Research, 32 (2002), 163. doi: 10.1007/BF02648953. Google Scholar

[3]

J. Ni and C. Beckermann, A volume-averaged two-phase model for solidication transportphenomena,, Metallurgical Transactions B, 22 (1991), 349. Google Scholar

[4]

W. D. Bennon and F. P. Incropera, A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems: I. Model Formulation,, Int. J. Heat Mass Transfer, 30 (1987), 2161. doi: 10.1016/0017-9310(87)90094-9. Google Scholar

[5]

W. D. Bennon and F. P. Incropera, A Continuum Model for Momentum, Heat and Species Transport in Binary Solid Liquid Phase Change Systems: II. Application to Solidification in a Rectangular Cavity,, Int. J. Heat Mass Transfer, 30 (1987), 2171. doi: 10.1016/0017-9310(87)90095-0. Google Scholar

[6]

Ph. Blanc, L. Gasser and J. Rappaz, Existence for a stationary model of binary alloy solidification,, RAIRO Modél. Math. Anal. Numér., 29 (1995), 687. Google Scholar

[7]

J. L. Boldrini and G. Planas, A tridimensional phase-field model with convection for phase change of an alloy,, Discrete Contin. Dyn. Syst., 13 (2005), 429. doi: 10.3934/dcds.2005.13.429. Google Scholar

[8]

P. Constantin and C. Foias, Navier-Stokes Equations,, Chicago Lectures in Mathematics, (1988). Google Scholar

[9]

M. Durán, E. Ortega-Torres and J. Rappaz, Weak solution of a stationary convection-diffusion model describing binary alloy solidification processes,, Math. Comput. Modelling, 42 (2005), 1269. doi: 10.1016/j.mcm.2005.01.035. Google Scholar

[10]

M. Durán and E. Ortega-Torres, Existence of weak solutions for a non-homogeneous solidification model,, Electron. J. Differential Equations, 2006 (). Google Scholar

[11]

I. Ekeland and R. Temam, Convex analysis and Variational Problems,, Society for Industrial and Applied Mathematics, (1999). doi: 10.1137/1.9781611971088. Google Scholar

[12]

J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach,, Encyclopedia of Mathematics and its Applications, (2008). doi: 10.1017/CBO9780511721595. Google Scholar

[13]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltzeva, Linear and Quasilinear Equations of Parabolic Type,, Translations of Mathematical Monographs, (1967). Google Scholar

[14]

G. Planas and J. L. Boldrini, A bidimensional phase-field model with convection for change phase of an alloy,, J. Math. Anal. Appl., 303 (2005), 669. doi: 10.1016/j.jmaa.2004.08.068. Google Scholar

[15]

J. C. Ramirez and C. Beckermann, Examination of binary alloy free dendritic growth theories with a phase-field model,, Acta Materialia, 53 (2005), 1721. doi: 10.1016/j.actamat.2004.12.021. Google Scholar

[16]

J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations,, J. Differ. Equations, 66 (1987), 118. doi: 10.1016/0022-0396(87)90043-X. Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali di Matematica Pura ed Applicata, 146 (1986), 64. doi: 10.1007/BF01762360. Google Scholar

[18]

J. Simon, A constructive proof of a theorem of G. de Rham,, C. R. Acad. Sci. Paris Sér. I Math., 316 (1993), 1167. Google Scholar

[19]

R. Temam, Navier Stokes Equations. Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984). Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Pure and Applied Mathematics, (1975). Google Scholar

[2]

W. J. Boettinger, J. A. Warren, C. Beckermann and A. Karma, Phase-field simulation of solidification,, Annual Review of Materials Research, 32 (2002), 163. doi: 10.1007/BF02648953. Google Scholar

[3]

J. Ni and C. Beckermann, A volume-averaged two-phase model for solidication transportphenomena,, Metallurgical Transactions B, 22 (1991), 349. Google Scholar

[4]

W. D. Bennon and F. P. Incropera, A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change Systems: I. Model Formulation,, Int. J. Heat Mass Transfer, 30 (1987), 2161. doi: 10.1016/0017-9310(87)90094-9. Google Scholar

[5]

W. D. Bennon and F. P. Incropera, A Continuum Model for Momentum, Heat and Species Transport in Binary Solid Liquid Phase Change Systems: II. Application to Solidification in a Rectangular Cavity,, Int. J. Heat Mass Transfer, 30 (1987), 2171. doi: 10.1016/0017-9310(87)90095-0. Google Scholar

[6]

Ph. Blanc, L. Gasser and J. Rappaz, Existence for a stationary model of binary alloy solidification,, RAIRO Modél. Math. Anal. Numér., 29 (1995), 687. Google Scholar

[7]

J. L. Boldrini and G. Planas, A tridimensional phase-field model with convection for phase change of an alloy,, Discrete Contin. Dyn. Syst., 13 (2005), 429. doi: 10.3934/dcds.2005.13.429. Google Scholar

[8]

P. Constantin and C. Foias, Navier-Stokes Equations,, Chicago Lectures in Mathematics, (1988). Google Scholar

[9]

M. Durán, E. Ortega-Torres and J. Rappaz, Weak solution of a stationary convection-diffusion model describing binary alloy solidification processes,, Math. Comput. Modelling, 42 (2005), 1269. doi: 10.1016/j.mcm.2005.01.035. Google Scholar

[10]

M. Durán and E. Ortega-Torres, Existence of weak solutions for a non-homogeneous solidification model,, Electron. J. Differential Equations, 2006 (). Google Scholar

[11]

I. Ekeland and R. Temam, Convex analysis and Variational Problems,, Society for Industrial and Applied Mathematics, (1999). doi: 10.1137/1.9781611971088. Google Scholar

[12]

J.-L. Lions and J. He, Exact and Approximate Controllability for Distributed Parameter Systems: A Numerical Approach,, Encyclopedia of Mathematics and its Applications, (2008). doi: 10.1017/CBO9780511721595. Google Scholar

[13]

O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Uraltzeva, Linear and Quasilinear Equations of Parabolic Type,, Translations of Mathematical Monographs, (1967). Google Scholar

[14]

G. Planas and J. L. Boldrini, A bidimensional phase-field model with convection for change phase of an alloy,, J. Math. Anal. Appl., 303 (2005), 669. doi: 10.1016/j.jmaa.2004.08.068. Google Scholar

[15]

J. C. Ramirez and C. Beckermann, Examination of binary alloy free dendritic growth theories with a phase-field model,, Acta Materialia, 53 (2005), 1721. doi: 10.1016/j.actamat.2004.12.021. Google Scholar

[16]

J.-C. Saut and B. Scheurer, Unique continuation for some evolution equations,, J. Differ. Equations, 66 (1987), 118. doi: 10.1016/0022-0396(87)90043-X. Google Scholar

[17]

J. Simon, Compact sets in the space $L^p(0,T;B)$,, Annali di Matematica Pura ed Applicata, 146 (1986), 64. doi: 10.1007/BF01762360. Google Scholar

[18]

J. Simon, A constructive proof of a theorem of G. de Rham,, C. R. Acad. Sci. Paris Sér. I Math., 316 (1993), 1167. Google Scholar

[19]

R. Temam, Navier Stokes Equations. Theory and Numerical Analysis,, Reprint of the 1984 edition, (1984). Google Scholar

[1]

Hee-Dae Kwon, Jeehyun Lee, Sung-Dae Yang. Eigenseries solutions to optimal control problem and controllability problems on hyperbolic PDEs. Discrete & Continuous Dynamical Systems - B, 2010, 13 (2) : 305-325. doi: 10.3934/dcdsb.2010.13.305

[2]

Ming Yan, Lili Chang, Ningning Yan. Finite element method for constrained optimal control problems governed by nonlinear elliptic PDEs. Mathematical Control & Related Fields, 2012, 2 (2) : 183-194. doi: 10.3934/mcrf.2012.2.183

[3]

N. U. Ahmed. Weak solutions of stochastic reaction diffusion equations and their optimal control. Discrete & Continuous Dynamical Systems - S, 2018, 11 (6) : 1011-1029. doi: 10.3934/dcdss.2018059

[4]

Marianne Beringhier, Adrien Leygue, Francisco Chinesta. Parametric nonlinear PDEs with multiple solutions: A PGD approach. Discrete & Continuous Dynamical Systems - S, 2016, 9 (2) : 383-392. doi: 10.3934/dcdss.2016002

[5]

Swann Marx, Tillmann Weisser, Didier Henrion, Jean Bernard Lasserre. A moment approach for entropy solutions to nonlinear hyperbolic PDEs. Mathematical Control & Related Fields, 2019, 0 (0) : 0-0. doi: 10.3934/mcrf.2019032

[6]

Lorena Bociu, Barbara Kaltenbacher, Petronela Radu. Preface: Introduction to the Special Volume on Nonlinear PDEs and Control Theory with Applications. Evolution Equations & Control Theory, 2013, 2 (2) : i-ii. doi: 10.3934/eect.2013.2.2i

[7]

Roberto Castelli, Susanna Terracini. On the regularization of the collision solutions of the one-center problem with weak forces. Discrete & Continuous Dynamical Systems - A, 2011, 31 (4) : 1197-1218. doi: 10.3934/dcds.2011.31.1197

[8]

Igor Chueshov, Irena Lasiecka. Existence, uniqueness of weak solutions and global attractors for a class of nonlinear 2D Kirchhoff-Boussinesq models. Discrete & Continuous Dynamical Systems - A, 2006, 15 (3) : 777-809. doi: 10.3934/dcds.2006.15.777

[9]

Ulisse Stefanelli, Daniel Wachsmuth, Gerd Wachsmuth. Optimal control of a rate-independent evolution equation via viscous regularization. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1467-1485. doi: 10.3934/dcdss.2017076

[10]

Alexander Komech. Attractors of Hamilton nonlinear PDEs. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 6201-6256. doi: 10.3934/dcds.2016071

[11]

Qun Lin, Ryan Loxton, Kok Lay Teo. The control parameterization method for nonlinear optimal control: A survey. Journal of Industrial & Management Optimization, 2014, 10 (1) : 275-309. doi: 10.3934/jimo.2014.10.275

[12]

Claus Kirchner, Michael Herty, Simone Göttlich, Axel Klar. Optimal control for continuous supply network models. Networks & Heterogeneous Media, 2006, 1 (4) : 675-688. doi: 10.3934/nhm.2006.1.675

[13]

Maria do Rosário de Pinho, Helmut Maurer, Hasnaa Zidani. Optimal control of normalized SIMR models with vaccination and treatment. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 79-99. doi: 10.3934/dcdsb.2018006

[14]

Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemann-liouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449-464. doi: 10.3934/mcrf.2017016

[15]

Xia Huang. Stable weak solutions of weighted nonlinear elliptic equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 293-305. doi: 10.3934/cpaa.2014.13.293

[16]

Frank Pörner, Daniel Wachsmuth. Tikhonov regularization of optimal control problems governed by semi-linear partial differential equations. Mathematical Control & Related Fields, 2018, 8 (1) : 315-335. doi: 10.3934/mcrf.2018013

[17]

Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897

[18]

Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456

[19]

Piermarco Cannarsa, Carlo Sinestrari. On a class of nonlinear time optimal control problems. Discrete & Continuous Dynamical Systems - A, 1995, 1 (2) : 285-300. doi: 10.3934/dcds.1995.1.285

[20]

Ying Zhang, Changjun Yu, Yingtao Xu, Yanqin Bai. Minimizing almost smooth control variation in nonlinear optimal control problems. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-21. doi: 10.3934/jimo.2019023

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

[Back to Top]