October  2014, 34(10): 3969-3983. doi: 10.3934/dcds.2014.34.3969

On global in time dynamics of a planar Bingham flow subject to a subdifferential boundary condition

1. 

Lyon University, F-42023 Saint-Etienne, Institut Camille Jordan CNRS UMR 5208, 23 Docteur Paul Michelon, 42023 Saint-Etienne Cedex 2, France

2. 

University of Warsaw, Institute of Applied Mathematics and Mechanics, Banacha 2, 02-097 Warsaw

Received  February 2012 Revised  May 2012 Published  April 2014

In this paper we study the global in time dynamics of a planar Bingham flow subject to a subdifferential boundary condition of Tresca's type. First, we prove the existence of a unique global in time solution of the considered problem and the existence of the global attractor. Then we show that for small driving forces the global attractor is trivial and attracts bounded sets in finite times or exponentially fast. In the end we prove the upper semicontinuity property of the global attractor with respect to the yield limit parameter when the latter approaches zero, thus relating the global attractors for the Bingham model of a fluid to that for the Navier-Stokes model.
Citation: Mahdi Boukrouche, Grzegorz Łukaszewicz. On global in time dynamics of a planar Bingham flow subject to a subdifferential boundary condition. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 3969-3983. doi: 10.3934/dcds.2014.34.3969
References:
[1]

M. Boukrouche and G. Łukaszewicz, An upper bound on the attractor dimension of a 2D turbulent shear flow in lubrication theory,, Nonlinear Analysis, 59 (2004), 1077. doi: 10.1016/j.na.2004.08.007. Google Scholar

[2]

M. Boukrouche and G. Łukaszewicz, An upper bound on the attractor dimension of a 2D turbulent shear flow with a free boundary condition,, in Regularity and Other Aspects of the Navier-Stokes Equations, (2005), 61. doi: 10.4064/bc70-0-4. Google Scholar

[3]

M. Boukrouche and G. Łukaszewicz, On the existence of pullback attractor for a two-dimensional shear flow with Tresca's boundary condition,, in Parabolic and Navier-Stokes Equations, (2008), 81. doi: 10.4064/bc81-0-5. Google Scholar

[4]

M. Boukrouche and G. Łukaszewicz, Shear flows and their attractors,, in Partial Differential Equations and Fluid Mechanics (eds. J. L. Rodrigo and J. C. Robinson), (2009), 1. Google Scholar

[5]

M. Boukrouche, G. Łukaszewicz and J. Real, On pullback attractors for a class of two-dimensional turbulent shear flows,, International Journal of Engineering Science, 44 (2006), 830. doi: 10.1016/j.ijengsci.2006.05.012. Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, AMS, (2002). doi: 10.1070/RM2013v068n02ABEH004832. Google Scholar

[7]

J. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems,, Cambridge University Press, (2000). doi: 10.1017/CBO9780511526404. Google Scholar

[8]

G. Duvaut and J. L. Lions, Les Inéquations en Mécanique et en Physique,, Dunod, (1972). Google Scholar

[9]

E. Feireisl and D. Pražák, Asymptotic Behavior of Dynamical Systems in Fluid Mechanics,, AIMS Series on Applied Mathematics, (2010). Google Scholar

[10]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, AMS, (1988). Google Scholar

[11]

J. Haslinger, I. Hlávâcek and J. Nečas, Numerical methods for unilateral problems in solid mechanics,, in Handbook of Numerical Analysis, (1996), 313. Google Scholar

[12]

O. Ladyzhenskaya and G. Seregin, On semigroups generated by initial-boundary problems describing two-dimensional visco-plastic flows,, in Nonlinear Evolution Equations, (1995), 99. Google Scholar

[13]

G. Łukaszewicz, On the existence of an exponential attractor for a planar shear flow with Tresca's friction condition,, Nonlinear Analysis, 14 (2013), 1585. doi: 10.1016/j.nonrwa.2012.04.018. Google Scholar

[14]

J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids,, J. Diff. Eqns., 127 (1996), 498. doi: 10.1006/jdeq.1996.0080. Google Scholar

[15]

J. Málek and D. Pražák, Large time behavior via the method of $l$-trajectories,, J. Diff. Eqns., 181 (2002), 243. doi: 10.1006/jdeq.2001.4087. Google Scholar

[16]

S. Migórski and A. Ochal, Navier-Stokes models modeled by evolution hemivariational inequalities,, Discrete and Continuous Dynamical Systems Supplement, (2007), 731. Google Scholar

[17]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of Differential Equations: Evolutionary Equations, (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[18]

S. Mizohata, The Theory of Partial Differential Equations,, Cambridge University Press, (1973). Google Scholar

[19]

P. P. Molosov and V. P. Myasnikov, Mechanics of Rigid Plastic Media,, (in Russian) Nauka, (1981). Google Scholar

[20]

P. P. Molosov and V. P. Myasnikov, On the correctness of boundary value problems in the mechanics of continuous media,, Math. USSR Sbornik, 17 (1972), 256. Google Scholar

[21]

P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications,, Birkhäuser Verlag, (1985). doi: 10.1007/978-1-4612-5152-1. Google Scholar

[22]

J. C. Robinson, Infnite-dimensional Dynamical Systems,, Cambridge University Press, (2001). doi: 10.1007/978-94-010-0732-0. Google Scholar

[23]

J. C. Robinson, Dimensions, Embeddings, and Attractors,, Cambridge University Press, (2011). Google Scholar

[24]

A. Segatti and S. Zelik, Finite-dimensional global and exponential attractors for the reaction-diffusion problem with an obstacle potential,, Nonlinearity, 22 (2009), 2733. doi: 10.1088/0951-7715/22/11/008. Google Scholar

[25]

G. Serëgin, On a dynamical system generated by the two-dimensional equations of the motion of a Bingham fluid,, Journal of Mathematical Sciences, 70 (1994), 1806. doi: 10.1007/BF02149150. Google Scholar

[26]

M. Shillor, M.Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact: Variational Methods,, Springer-Verlag, (2010). Google Scholar

[27]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, 2nd. ed., (1997). Google Scholar

show all references

References:
[1]

M. Boukrouche and G. Łukaszewicz, An upper bound on the attractor dimension of a 2D turbulent shear flow in lubrication theory,, Nonlinear Analysis, 59 (2004), 1077. doi: 10.1016/j.na.2004.08.007. Google Scholar

[2]

M. Boukrouche and G. Łukaszewicz, An upper bound on the attractor dimension of a 2D turbulent shear flow with a free boundary condition,, in Regularity and Other Aspects of the Navier-Stokes Equations, (2005), 61. doi: 10.4064/bc70-0-4. Google Scholar

[3]

M. Boukrouche and G. Łukaszewicz, On the existence of pullback attractor for a two-dimensional shear flow with Tresca's boundary condition,, in Parabolic and Navier-Stokes Equations, (2008), 81. doi: 10.4064/bc81-0-5. Google Scholar

[4]

M. Boukrouche and G. Łukaszewicz, Shear flows and their attractors,, in Partial Differential Equations and Fluid Mechanics (eds. J. L. Rodrigo and J. C. Robinson), (2009), 1. Google Scholar

[5]

M. Boukrouche, G. Łukaszewicz and J. Real, On pullback attractors for a class of two-dimensional turbulent shear flows,, International Journal of Engineering Science, 44 (2006), 830. doi: 10.1016/j.ijengsci.2006.05.012. Google Scholar

[6]

V. V. Chepyzhov and M. I. Vishik, Attractors for Equations of Mathematical Physics,, AMS, (2002). doi: 10.1070/RM2013v068n02ABEH004832. Google Scholar

[7]

J. Cholewa and T. Dłotko, Global Attractors in Abstract Parabolic Problems,, Cambridge University Press, (2000). doi: 10.1017/CBO9780511526404. Google Scholar

[8]

G. Duvaut and J. L. Lions, Les Inéquations en Mécanique et en Physique,, Dunod, (1972). Google Scholar

[9]

E. Feireisl and D. Pražák, Asymptotic Behavior of Dynamical Systems in Fluid Mechanics,, AIMS Series on Applied Mathematics, (2010). Google Scholar

[10]

J. K. Hale, Asymptotic Behavior of Dissipative Systems,, AMS, (1988). Google Scholar

[11]

J. Haslinger, I. Hlávâcek and J. Nečas, Numerical methods for unilateral problems in solid mechanics,, in Handbook of Numerical Analysis, (1996), 313. Google Scholar

[12]

O. Ladyzhenskaya and G. Seregin, On semigroups generated by initial-boundary problems describing two-dimensional visco-plastic flows,, in Nonlinear Evolution Equations, (1995), 99. Google Scholar

[13]

G. Łukaszewicz, On the existence of an exponential attractor for a planar shear flow with Tresca's friction condition,, Nonlinear Analysis, 14 (2013), 1585. doi: 10.1016/j.nonrwa.2012.04.018. Google Scholar

[14]

J. Málek and J. Nečas, A finite-dimensional attractor for three-dimensional flow of incompressible fluids,, J. Diff. Eqns., 127 (1996), 498. doi: 10.1006/jdeq.1996.0080. Google Scholar

[15]

J. Málek and D. Pražák, Large time behavior via the method of $l$-trajectories,, J. Diff. Eqns., 181 (2002), 243. doi: 10.1006/jdeq.2001.4087. Google Scholar

[16]

S. Migórski and A. Ochal, Navier-Stokes models modeled by evolution hemivariational inequalities,, Discrete and Continuous Dynamical Systems Supplement, (2007), 731. Google Scholar

[17]

A. Miranville and S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains,, in Handbook of Differential Equations: Evolutionary Equations, (2008), 103. doi: 10.1016/S1874-5717(08)00003-0. Google Scholar

[18]

S. Mizohata, The Theory of Partial Differential Equations,, Cambridge University Press, (1973). Google Scholar

[19]

P. P. Molosov and V. P. Myasnikov, Mechanics of Rigid Plastic Media,, (in Russian) Nauka, (1981). Google Scholar

[20]

P. P. Molosov and V. P. Myasnikov, On the correctness of boundary value problems in the mechanics of continuous media,, Math. USSR Sbornik, 17 (1972), 256. Google Scholar

[21]

P. D. Panagiotopoulos, Inequality Problems in Mechanics and Applications,, Birkhäuser Verlag, (1985). doi: 10.1007/978-1-4612-5152-1. Google Scholar

[22]

J. C. Robinson, Infnite-dimensional Dynamical Systems,, Cambridge University Press, (2001). doi: 10.1007/978-94-010-0732-0. Google Scholar

[23]

J. C. Robinson, Dimensions, Embeddings, and Attractors,, Cambridge University Press, (2011). Google Scholar

[24]

A. Segatti and S. Zelik, Finite-dimensional global and exponential attractors for the reaction-diffusion problem with an obstacle potential,, Nonlinearity, 22 (2009), 2733. doi: 10.1088/0951-7715/22/11/008. Google Scholar

[25]

G. Serëgin, On a dynamical system generated by the two-dimensional equations of the motion of a Bingham fluid,, Journal of Mathematical Sciences, 70 (1994), 1806. doi: 10.1007/BF02149150. Google Scholar

[26]

M. Shillor, M.Sofonea and J. J. Telega, Models and Analysis of Quasistatic Contact: Variational Methods,, Springer-Verlag, (2010). Google Scholar

[27]

R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics,, 2nd. ed., (1997). Google Scholar

[1]

María Astudillo, Marcelo M. Cavalcanti. On the upper semicontinuity of the global attractor for a porous medium type problem with large diffusion. Evolution Equations & Control Theory, 2017, 6 (1) : 1-13. doi: 10.3934/eect.2017001

[2]

Ahmed Y. Abdallah. Upper semicontinuity of the attractor for a second order lattice dynamical system. Discrete & Continuous Dynamical Systems - B, 2005, 5 (4) : 899-916. doi: 10.3934/dcdsb.2005.5.899

[3]

Wen Tan. The regularity of pullback attractor for a non-autonomous p-Laplacian equation with dynamical boundary condition. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 529-546. doi: 10.3934/dcdsb.2018194

[4]

Dalibor Pražák. Exponential attractor for the delayed logistic equation with a nonlinear diffusion. Conference Publications, 2003, 2003 (Special) : 717-726. doi: 10.3934/proc.2003.2003.717

[5]

Messoud Efendiev, Anna Zhigun. On an exponential attractor for a class of PDEs with degenerate diffusion and chemotaxis. Discrete & Continuous Dynamical Systems - A, 2018, 38 (2) : 651-673. doi: 10.3934/dcds.2018028

[6]

Alain Miranville, Xiaoming Wang. Upper bound on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 1996, 2 (1) : 95-110. doi: 10.3934/dcds.1996.2.95

[7]

Nobuyuki Kenmochi, Noriaki Yamazaki. Global attractor of the multivalued semigroup associated with a phase-field model of grain boundary motion with constraint. Conference Publications, 2011, 2011 (Special) : 824-833. doi: 10.3934/proc.2011.2011.824

[8]

Eduardo Liz, Gergely Röst. On the global attractor of delay differential equations with unimodal feedback. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1215-1224. doi: 10.3934/dcds.2009.24.1215

[9]

I. D. Chueshov, Iryna Ryzhkova. A global attractor for a fluid--plate interaction model. Communications on Pure & Applied Analysis, 2013, 12 (4) : 1635-1656. doi: 10.3934/cpaa.2013.12.1635

[10]

Hiroshi Matano, Ken-Ichi Nakamura. The global attractor of semilinear parabolic equations on $S^1$. Discrete & Continuous Dynamical Systems - A, 1997, 3 (1) : 1-24. doi: 10.3934/dcds.1997.3.1

[11]

Yuncheng You. Global attractor of the Gray-Scott equations. Communications on Pure & Applied Analysis, 2008, 7 (4) : 947-970. doi: 10.3934/cpaa.2008.7.947

[12]

Rana D. Parshad, Juan B. Gutierrez. On the global attractor of the Trojan Y Chromosome model. Communications on Pure & Applied Analysis, 2011, 10 (1) : 339-359. doi: 10.3934/cpaa.2011.10.339

[13]

Alexey Cheskidov, Susan Friedlander, Nataša Pavlović. An inviscid dyadic model of turbulence: The global attractor. Discrete & Continuous Dynamical Systems - A, 2010, 26 (3) : 781-794. doi: 10.3934/dcds.2010.26.781

[14]

M. Bulíček, F. Ettwein, P. Kaplický, Dalibor Pražák. The dimension of the attractor for the 3D flow of a non-Newtonian fluid. Communications on Pure & Applied Analysis, 2009, 8 (5) : 1503-1520. doi: 10.3934/cpaa.2009.8.1503

[15]

Zhaojuan Wang, Shengfan Zhou. Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4767-4817. doi: 10.3934/dcds.2018210

[16]

Alexei Ilyin, Kavita Patni, Sergey Zelik. Upper bounds for the attractor dimension of damped Navier-Stokes equations in $\mathbb R^2$. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 2085-2102. doi: 10.3934/dcds.2016.36.2085

[17]

Tamara Fastovska. Upper semicontinuous attractor for 2D Mindlin-Timoshenko thermoelastic model with memory. Communications on Pure & Applied Analysis, 2007, 6 (1) : 83-101. doi: 10.3934/cpaa.2007.6.83

[18]

Milena Stanislavova. On the global attractor for the damped Benjamin-Bona-Mahony equation. Conference Publications, 2005, 2005 (Special) : 824-832. doi: 10.3934/proc.2005.2005.824

[19]

Ning Ju. The global attractor for the solutions to the 3D viscous primitive equations. Discrete & Continuous Dynamical Systems - A, 2007, 17 (1) : 159-179. doi: 10.3934/dcds.2007.17.159

[20]

Antonio Segatti. Global attractor for a class of doubly nonlinear abstract evolution equations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (4) : 801-820. doi: 10.3934/dcds.2006.14.801

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]