September  2014, 34(9): 3371-3382. doi: 10.3934/dcds.2014.34.3371

A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity

1. 

Institut de Mathématiques de Toulouse & TSE, Université Toulouse I Capitole, Manufacture des Tabacs, 21, Allée de Brienne, 31015 Toulouse Cedex 6, France

2. 

Instituto de Matemática Interdiciplinar, Departamento de Matemática Aplicada, Universidad Complutense de Madrid, Plaza de las Ciencias, 3, 28040 Madrid, Spain

Received  December 2012 Revised  November 2013 Published  March 2014

We prove the compactness of the support of the solution of some stationary Schrödinger equations with a singular nonlinear order term. We present here a sharper version of some energy methods previously used in the literature.
Citation: Pascal Bégout, Jesús Ildefonso Díaz. A sharper energy method for the localization of the support to some stationary Schrödinger equations with a singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3371-3382. doi: 10.3934/dcds.2014.34.3371
References:
[1]

S. N. Antontsev, J. I. Díaz, and S. Shmarev, Energy methods for free boundary problems: Applications to nonlinear PDEs and fluid mechanics,, Progress in Nonlinear Differential Equations and their Applications, (2002). Google Scholar

[2]

P. Bégout and J. I. Díaz, Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity,, Accepted for publication in RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., (). Google Scholar

[3]

P. Bégout and J. I. Díaz, Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations,, Submitted, (). Google Scholar

[4]

P. Bégout and J. I. Díaz, On a nonlinear Schrödinger equation with a localizing effect,, C. R. Math. Acad. Sci. Paris, 342 (2006), 459. doi: 10.1016/j.crma.2006.01.027. Google Scholar

[5]

P. Bégout and J. I. Díaz, Localizing estimates of the support of solutions of some nonlinear Schrödinger equations - The stationary case,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 35. doi: 10.1016/j.anihpc.2011.09.001. Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003). Google Scholar

show all references

References:
[1]

S. N. Antontsev, J. I. Díaz, and S. Shmarev, Energy methods for free boundary problems: Applications to nonlinear PDEs and fluid mechanics,, Progress in Nonlinear Differential Equations and their Applications, (2002). Google Scholar

[2]

P. Bégout and J. I. Díaz, Existence of weak solutions to some stationary Schrödinger equations with singular nonlinearity,, Accepted for publication in RACSAM Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., (). Google Scholar

[3]

P. Bégout and J. I. Díaz, Self-similar solutions with compactly supported profile of some nonlinear Schrödinger equations,, Submitted, (). Google Scholar

[4]

P. Bégout and J. I. Díaz, On a nonlinear Schrödinger equation with a localizing effect,, C. R. Math. Acad. Sci. Paris, 342 (2006), 459. doi: 10.1016/j.crma.2006.01.027. Google Scholar

[5]

P. Bégout and J. I. Díaz, Localizing estimates of the support of solutions of some nonlinear Schrödinger equations - The stationary case,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 29 (2012), 35. doi: 10.1016/j.anihpc.2011.09.001. Google Scholar

[6]

T. Cazenave, Semilinear Schrödinger Equations,, Courant Lecture Notes in Mathematics, (2003). Google Scholar

[1]

Miaomiao Niu, Zhongwei Tang. Least energy solutions for nonlinear Schrödinger equation involving the fractional Laplacian and critical growth. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3963-3987. doi: 10.3934/dcds.2017168

[2]

D.G. deFigueiredo, Yanheng Ding. Solutions of a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2002, 8 (3) : 563-584. doi: 10.3934/dcds.2002.8.563

[3]

Rossella Bartolo, Anna Maria Candela, Addolorata Salvatore. Infinitely many solutions for a perturbed Schrödinger equation. Conference Publications, 2015, 2015 (special) : 94-102. doi: 10.3934/proc.2015.0094

[4]

Anna Geyer. A note on uniqueness and compact support of solutions in a recent model for tsunami background flows. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1431-1438. doi: 10.3934/cpaa.2012.11.1431

[5]

Pierre Lissy. Construction of gevrey functions with compact support using the bray-mandelbrojt iterative process and applications to the moment method in control theory. Mathematical Control & Related Fields, 2017, 7 (1) : 21-40. doi: 10.3934/mcrf.2017002

[6]

Kenji Nakanishi, Tristan Roy. Global dynamics above the ground state for the energy-critical Schrödinger equation with radial data. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2023-2058. doi: 10.3934/cpaa.2016026

[7]

Benoît Pausader. The focusing energy-critical fourth-order Schrödinger equation with radial data. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1275-1292. doi: 10.3934/dcds.2009.24.1275

[8]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[9]

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, T. Tao. Polynomial upper bounds for the instability of the nonlinear Schrödinger equation below the energy norm. Communications on Pure & Applied Analysis, 2003, 2 (1) : 33-50. doi: 10.3934/cpaa.2003.2.33

[10]

Congming Peng, Dun Zhao. Global existence and blowup on the energy space for the inhomogeneous fractional nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3335-3356. doi: 10.3934/dcdsb.2018323

[11]

Miaomiao Niu, Zhongwei Tang. Least energy solutions of nonlinear Schrödinger equations involving the half Laplacian and potential wells. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1215-1231. doi: 10.3934/cpaa.2016.15.1215

[12]

Thomas Duyckaerts, Carlos E. Kenig, Frank Merle. Profiles for bounded solutions of dispersive equations, with applications to energy-critical wave and Schrödinger equations. Communications on Pure & Applied Analysis, 2015, 14 (4) : 1275-1326. doi: 10.3934/cpaa.2015.14.1275

[13]

Zhongwei Tang. Least energy solutions for semilinear Schrödinger equations involving critical growth and indefinite potentials. Communications on Pure & Applied Analysis, 2014, 13 (1) : 237-248. doi: 10.3934/cpaa.2014.13.237

[14]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[15]

Wulong Liu, Guowei Dai. Multiple solutions for a fractional nonlinear Schrödinger equation with local potential. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2105-2123. doi: 10.3934/cpaa.2017104

[16]

Kun Cheng, Yinbin Deng. Nodal solutions for a generalized quasilinear Schrödinger equation with critical exponents. Discrete & Continuous Dynamical Systems - A, 2017, 37 (1) : 77-103. doi: 10.3934/dcds.2017004

[17]

Xudong Shang, Jihui Zhang. Multiplicity and concentration of positive solutions for fractional nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2018, 17 (6) : 2239-2259. doi: 10.3934/cpaa.2018107

[18]

Walter Dambrosio, Duccio Papini. Multiple homoclinic solutions for a one-dimensional Schrödinger equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (4) : 1025-1038. doi: 10.3934/dcdss.2016040

[19]

Kazuhiro Kurata, Tatsuya Watanabe. A remark on asymptotic profiles of radial solutions with a vortex to a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 597-610. doi: 10.3934/cpaa.2006.5.597

[20]

Meina Gao, Jianjun Liu. Quasi-periodic solutions for derivative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2012, 32 (6) : 2101-2123. doi: 10.3934/dcds.2012.32.2101

2018 Impact Factor: 1.143

Metrics

  • PDF downloads (9)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]